www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Komponenten berechnen
Komponenten berechnen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komponenten berechnen: Erklärung
Status: (Frage) beantwortet Status 
Datum: 21:57 Di 20.11.2012
Autor: Cloud123

Aufgabe
Ein Vektor [mm] \overrightarrow{a} [/mm] ist mit seinen Komponenten ax, ay und az im x - y - z - Koordinatensystem gegeben.
Berechnen Sie seine Komponenten ax', ay' und az' im x' - y' - z' -Koordinatensystem, das gegenüber dem x - y -z - Koordinatensystem um die z-Achse um [mm] \gamma [/mm] = 60° verdreht ist.

Hallo.
Kann mir wer erklären wie man die Aufgabe lösen kann.
Oder kann mir jemand eine Seite schicken die das gut erklärt damit ich es alleine versuchen kann?



        
Bezug
Komponenten berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:39 Di 20.11.2012
Autor: reverend

Hallo Cloud,

das wird jetzt schwieriger klingen, als es eigentlich ist...

> Ein Vektor [mm]\overrightarrow{a}[/mm] ist mit seinen Komponenten
> ax, ay und az im x - y - z - Koordinatensystem gegeben.

Schreib lieber [mm] a_x, a_y, a_z [/mm]

>  Berechnen Sie seine Komponenten ax', ay' und az' im x' -
> y' - z' -Koordinatensystem, das gegenüber dem x - y -z -
> Koordinatensystem um die z-Achse um [mm]\gamma[/mm] = 60° verdreht
> ist.

Und hier [mm] a_{x'}, a_{y'}, a_{z'}. [/mm]

>  Hallo.
>  Kann mir wer erklären wie man die Aufgabe lösen kann.
>  Oder kann mir jemand eine Seite schicken die das gut
> erklärt damit ich es alleine versuchen kann?

Eine Seite habe ich nicht gefunden, mag es aber geben.

Erstmal: was heißt wohl "um die z-Achse um [mm] \gamma=60^{\circ} [/mm] verdreht"?
Wir schauen von oben auf die z-Achse und drehen alles um 60° nach links.

Das heißt vor allem: $z=z'$ und damit auch [mm] a_{z'}=a_z. [/mm]
Damit wäre ja schonmal ein Drittel der Aufgabe gelöst.

Was passiert mit der x-Komponente? Drehen wir den Vektor [mm] (1,0,0)^{T}_{(x,y,z)} [/mm] mal um 60°. Dann wird er auf den Vektor [mm] \left(\tfrac{1}{2},\tfrac{1}{2}\wurzel{3},0\right)^T_{(x,y,z)} [/mm] abgebildet. Der heißt jetzt in den neuen Koordinaten [mm] (1,0,0)^T_{(x',y',z')}. [/mm]

So ähnlich in y-Richtung: [mm] (0,1,0)^T_{(x,y,z)}\to\left(-\tfrac{1}{2}\wurzel{3},\tfrac{1}{2},0\right)^T_{(x,y,z)}=(0,1,0)^T_{(x',y',z')}. [/mm]

Zeichne Dir das mal in der x,y-Ebene auf und wende Dein Wissen über Sinus und Cosinus an.

Wie kannst Du jetzt die x'-Komponte [mm] a_{x'} [/mm] in Abhängigkeit von x,y darstellen? Und wie [mm] a_{y'}, [/mm] ebenfalls in (einer anderen) Abhängigkeit von x,y?

Grüße
reverend


Bezug
                
Bezug
Komponenten berechnen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:10 Mi 21.11.2012
Autor: Cloud123

Ok das heißt [mm] a_z_' [/mm] = 5 wenn [mm] a_z [/mm] = 5 ist.

Ich hab ne Seite gefunden.
http://www.chemgapedia.de/vsengine/vlu/vsc/de/ma/1/mc/ma_11/ma_11_03/ma_11_03_02.vlu/Page/vsc/de/ma/1/mc/ma_11/ma_11_03/ma_11_03_10.vscml.html

Kannst du gucken ob das richtig wäre:
Wenn das gegeben ist

[mm] a_x [/mm] = 10
[mm] a_y [/mm] = 16
[mm] a_z [/mm] = 5

[mm] a_x_' [/mm] = cos(60) * 10 - sin(60) * 16
= - 8,856
[mm] a_y_' [/mm] = sin(60) * 10 + cos(60) * 16
= 16,66

Bezug
                        
Bezug
Komponenten berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 Mi 21.11.2012
Autor: chrisno

Das sieht gut aus. Das neue Koordinatensystem ist von oben gesehen (also so dass die der positive Teil der z-Achse ins Auge sticht) nun um 60° im Uhrzeigersinn um die z-Achse gedreht.

Bezug
                                
Bezug
Komponenten berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:22 Mi 21.11.2012
Autor: Calli


> Das sieht gut aus. Das neue Koordinatensystem ist von oben
> gesehen (also so dass die der positive Teil der z-Achse ins
> Auge sticht) nun um 60° im Uhrzeigersinn um die z-Achse
> gedreht.

Fragt sich nur, ob eine Drehung 'cw' (mathematisch negativ) mit der Angabe 'Drehung um γ = 60°' ('ccw' bzw. mathematisch positiv) im Sinne der Aufgabenstellung ist.
[happy]


Bezug
                                        
Bezug
Komponenten berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 Mi 21.11.2012
Autor: reverend


> > Das sieht gut aus. Das neue Koordinatensystem ist von oben
> > gesehen (also so dass die der positive Teil der z-Achse ins
> > Auge sticht) nun um 60° im Uhrzeigersinn um die z-Achse
> > gedreht.
>
> Fragt sich nur, ob eine Drehung 'cw' (mathematisch negativ)
> mit der Angabe 'Drehung um γ = 60°' ('ccw' bzw.
> mathematisch positiv) im Sinne der Aufgabenstellung ist.
>  [happy]

Gute Frage, Calli.

Grüße
rev


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de