Komposition von Abbildungen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:27 Mi 03.05.2017 | Autor: | Olli1968 |
Aufgabe | Satz: Sind [mm] f:M_{1} \to M_{2} [/mm] und [mm] g:M_{2} \to M_{3} [/mm] Abbildungen, so ist auch die Komposition [mm] g \circ f:M_{1} \to M_{3} [/mm] eine Abbildung. (Beweis als Übung.) |
Hallo liebe Mathefreunde,
zunächst ein Lob an euch: Ihr seid echt schnell und super. Mit ein Grund warum ich diese Seite auch gerne weiterempfehle - Danke!
Zurück zum Satz und zum Beweis.
Vorab: Wir haben die Abbildung wie folgt definiert:
Def.: Sind [mm] M [/mm] und [mm] N [/mm] zwei nicht leere Mengen und [mm] f \subseteq M \times N [/mm], so heißt [mm] f [/mm] eine Abbildung von [mm] M [/mm] nach [mm] N [/mm], falls es zu jedem [mm] m \in M [/mm] genau ein [mm] n \in N [/mm] mit [mm] (m,n) \in f [/mm] gibt.
Zum Beweis: (hier nun mein Versuch)
Sei [mm] x \in M_{1} [/mm]. Da [mm] f:M_{1} \to M_{2} [/mm] , gibt es zu jedem [mm] x [/mm] genau ein [mm] y \in M_{2} [/mm], so dass [mm] (x, y) \in f \subseteq M_{1} \times M_{2} [/mm].
Da [mm] g:M_{2} \to M_{3} [/mm] eine Abbildung ist, gibt es zu jedem [mm] y \in M_{2} [/mm] genau ein [mm] z \in M_{3} [/mm], mit [mm] (y, z) \in g [/mm].
Insbesondere gibt es zu jedem [mm] y \in M_{2} [/mm] mit [mm] (x,y) \in f \subseteq M_{1} \times M_{2} [/mm] genau ein [mm] z \in M_{3} [/mm], so dass mit [mm] y=f(x) [/mm] gilt [mm] (f(x), z) \in g \subseteq M_{2} \times M_{3} [/mm].
Somit gilt für die Komposition [mm] g \circ f : M_{1} \times M_{3} [/mm] das für jedes [mm] x \in M_{1} [/mm] genau ein [mm] z \in M_{3} [/mm] existiert mit [mm] (x,z) \in (g \circ f) \subseteq M_{1} \times M_{3} [/mm].
Also ist [mm] g \circ f : M_{1} \to M_{3} [/mm] eine Abbildung im Sinne der Definition. q.e.d.
Wäre das ein Beweis für den obigen Satz?
Vielen Dank
LG Olli
|
|
|
|
Hiho,
> Zum Beweis: (hier nun mein Versuch)
> Sei [mm]x \in M_{1} [/mm]. Da [mm]f:M_{1} \to M_{2}[/mm] , gibt es zu jedem [mm]x[/mm] genau ein [mm]y \in M_{2} [/mm], so dass [mm](x, y) \in f \subseteq M_{1} \times M_{2} [/mm].
> Da [mm]g:M_{2} \to M_{3}[/mm] eine Abbildung ist, gibt es zu jedem [mm]y \in M_{2}[/mm] genau ein [mm]z \in M_{3} [/mm], mit [mm](y, z) \in g [/mm].
> Insbesondere gibt es zu jedem [mm]y \in M_{2}[/mm] mit [mm](x,y) \in f \subseteq M_{1} \times M_{2}[/mm]
> genau ein [mm]z \in M_{3} [/mm], so dass mit [mm]y=f(x)[/mm] gilt [mm](f(x), z) \in g \subseteq M_{2} \times M_{3} [/mm].
> Somit gilt für die Komposition [mm]g \circ f : M_{1} \times M_{3}[/mm]
> das für jedes [mm]x \in M_{1}[/mm] genau ein [mm]z \in M_{3}[/mm] existiert mit [mm](x,z) \in (g \circ f) \subseteq M_{1} \times M_{3} [/mm].
> Wäre das ein Beweis für den obigen Satz?
Sieht gut aus.
Gruß,
Gono
|
|
|
|