www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Konfidenzintervall
Konfidenzintervall < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konfidenzintervall: Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:47 Do 02.07.2009
Autor: ToniKa

Aufgabe
Eine Gewichtsbestimmung von Sonnenblumenpflanzen ergab folgende Werte in Gramm:
99.2; 101.9; 77.7; 105.6; 98.2; 96.9; 97.9; 108.4; 115.9; 122.9
Wir nehmen an (z.B. aus Erfahrung), dass die Gewichte der Sonnenblumen Realisierungen
unabhängiger identisch normalverteilter Zufallsvariblen sind.
a) Berechnen Sie bitte unter dieser Annahme ein 95%-Konfidenzintervall für den
Erwartungswert der Zufallsvariablen des Gewichts X; falls die Varianz von X
nicht bekannt ist.
b) Lösen Sie bitte das Problem aus a) für den Fall einer bekannten Varianz [mm] s^2 [/mm] = 120
von X. Vergleichen Sie Ihr Ergebnis mit dem aus a).

Hallo an alle,
ich habe die Lösung zur Aufgabe, verstehe aber leider nicht wie man [mm] \alpha [/mm] bestimmt.

Mittelwert: 102,46
Für [mm] \wurzel{s^2}: [/mm] 12,19

[mm] \overline{x}\pm t(1-\bruch{\alpha}{2}; n-1)*\bruch{s}{\wurzel{n}}= 102,46\pm2,262*\bruch{12,19}{\wurzel{10}} [/mm] (für(a))

P(93,74<= x <= 111,18)

wieso ist die Gleichung in dieser Aufgabe 1- [mm] \bruch{\alpha}{2}=0,975 [/mm] ?

Es wäre sehr nett, wenn jemand mir erklären könnte, wie man [mm] \alpha [/mm] bestimmt, wie entnimmt man den Wert der Tabelle?

Vielen Dank im Voraus

        
Bezug
Konfidenzintervall: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Do 02.07.2009
Autor: luis52


>  
> wieso ist die Gleichung in dieser Aufgabe [mm] $1-\bruch{\alpha}{2}=0,975$ [/mm] ?

Es ist ein KI zum Niveau 95% zu berechnen. Setze [mm] $1-\alpha=0.95\Rightarrow1-\alpha/2=0.975$. [/mm]

vg Luis

Bezug
                
Bezug
Konfidenzintervall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:45 Do 02.07.2009
Autor: ToniKa

Hallo Luis, danke für die Antwort,
vielleich habe ich Dich falsch verstanden, aber wenn ich für [mm] \alpha [/mm] 0,95 einsetze, habe ich [mm] 1-\bruch{0,95}{2}= [/mm] 0,525 ?

und zu (b) habe ich auch eine Frage. Ich habe zwar die Lösung, aber ich verstehe nicht wie man auf 1,96  kommt?

102,46 [mm] \pm [/mm] 1,96 * [mm] \bruch{10,954}{\wurzel{10}}, [/mm] wobei [mm] s^2=120 \Rightarrow [/mm] s=10,954

Danke

Bezug
                        
Bezug
Konfidenzintervall: Antwort
Status: (Antwort) fertig Status 
Datum: 23:17 Do 02.07.2009
Autor: luis52


> Hallo Luis, danke für die Antwort,
> vielleich habe ich Dich falsch verstanden, aber wenn ich
> für [mm]\alpha[/mm] 0,95 einsetze, habe ich [mm]1-\bruch{0,95}{2}=[/mm]
> 0,525 ?

Hab's korrigiert.

>  
> und zu (b) habe ich auch eine Frage. Ich habe zwar die
> Lösung, aber ich verstehe nicht wie man auf 1,96  kommt?
>
> 102,46 [mm]\pm[/mm] 1,96 * [mm]\bruch{10,954}{\wurzel{10}},[/mm] wobei
> [mm]s^2=120 \Rightarrow[/mm] s=10,954

>

Es gibt hier zwei Annahmen, die man trifft:

1) Die Varianz der  Verteilung ist unbekannt. Dann rechnet man mit der t-Verteilung wie in a)

2)  Die Varianz der  Verteilung ist bekannt. Dann rechnet man mit der (Standard-)Normalverteilung.

vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de