www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Konfidenzintervall, zweiseitig
Konfidenzintervall, zweiseitig < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konfidenzintervall, zweiseitig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:16 Sa 29.06.2013
Autor: airborne311

Aufgabe
Y ist annähernd normalverteilt. Um den Erwartungswert zu schätzen wird folgende Stichprobe gezogen

[mm]y_i[/mm]            35   42  45  54
Häufigkeit   6    8   5   1

Bestimmen Sie ein Schätzintervall für den Erwartungswert von [mm]y_i[/mm] mit einer Irrtumswahrscheinlichkeit von 5%.

Hallo,

komme mit meiner Formelsammlung nicht zu dem Ergebnis in meiner Musterlösung. Ich muss dazu sagen, dass ich die Musterlösungen in einem Tutorium relativ hastig von einer Overhead-Folie abschreiben musste, weil alles sehr schnell ging. Könnte also sein, dass ich beim abschreiben geschlampt habe, vermute das aber eher nicht.

Mein Lösungsansatz:

Ich bestimme zunächst den Erwartungswert

[mm]\bar y = \bruch{6*35+8*42+5*45+1*51}{20}[/mm]=41,1

Dann berechne ich [mm]s^2[/mm]

[mm]s^2 = \bruch{1}{19} * [6*(35-41,1)^2 +8*(42-41,1)^2 +5*(45-41,1)^2 +(51-41,1)^2][/mm]

Dann ziehe ich die Wurzel aus der Varianz und bekomme die Standradabweichung s=4,61

Das brauche ich alles für die Formel des Konfidenzintervalls. Bis hierher komme ich und jetzt beginnt mein Problem. Ich vermue, dass es sich um ein zweiseitiges Konfidenzintervall handelt, also müsste es folgende Formel aus meiner Formelsammlung sein:

[mm]\bar x - z_{1-\bruch{\alpha}{2}} * \bruch{\sigma_0}{\wurzel{n}}[/mm]

Und dann halt das ganze nochmal mit [mm]\bar x[/mm] minus der restlichen Formel

Im Prinzip verstehe ich die Formel, nur das, was ich in der Formel an der Stelle [mm]z_{1-\bruch{\alpha}{2}}[/mm] einsetze unterscheidet sich von der Musterlösung.

Alpha = 5% = 0,05 also ist 1-[mm]\bruch{\alpha}{2}[/mm] = 0,975

Wenn ich jetzt in meiner Tabelle "Quantile der [mm]z_1-{\bruch{\alpha}{2}}[/mm] Standard-Normalverteilung", nachschaue, dann steht da für für den z-Wert 0,975 der Wert 1,95996

Wenn ich damit rechne, komme ich auf ein falsches Ergebnis. Laut Musterlösung soll als Konfidenzintervall = [38,94 ; 43,26] herauskommen. Und was mich stutzig macht und was ich nicht verstehe: Ich habe in meiner Musterlösung  stehen:

[mm]\bar y +/- z_{0,975} (19) + \bruch{4,61}{\wurzel 20}[/mm]

Unter [mm]z_{0,975}[/mm] (19) ist noch so eine zusammenfassende Klammer und darunter steht 2,093
So, als ob das zusammengefasst 2,093 ergeben würde. Aber damit hab ich auch schon gerechnet, leider ohne Erfolg.

Ich hab jetzt extrem weit ausgeholt, sorry dafür. Vermutlich habe ich da einfach nur was falsch abgeschriebn mit dieser 19....keine Ahnung, wo die herkommen soll.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke schonmal im Voraus für eure Hilfe.







        
Bezug
Konfidenzintervall, zweiseitig: Antwort
Status: (Antwort) fertig Status 
Datum: 13:31 Sa 29.06.2013
Autor: luis52

Moin airborne311

[willkommenmr]


Vielleicht hast du etwas ungenau gerechnet: *Ich* erhalte [mm] $\bar [/mm] x= 41.25$
und $s= 24.82895$. Damit und mit dem Quantil $2.093$ erhalte ich $[38.9179,43.5821]$.

vg Luis


Bezug
        
Bezug
Konfidenzintervall, zweiseitig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Mi 03.07.2013
Autor: airborne311

Sorry, dass ich mich so spät melde.

Zunächst einmal danke für die Hilfestellung.

Allerdings verstehe ich nicht, warum man in der Tabell für n=19 suchen muss.
Wenn ich die Häufigkeiten addiere, dann komme ich doch auf n=20 ?

Bezug
                
Bezug
Konfidenzintervall, zweiseitig: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Mi 03.07.2013
Autor: luis52

Moin

schau mal []hier, Erwartungswert eines normalverteilten Merkmals mit unbekannter Varianz.

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de