www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Kongruenz Eulersche Funktion
Kongruenz Eulersche Funktion < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kongruenz Eulersche Funktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 00:05 Fr 06.11.2020
Autor: sancho1980

Aufgabe
Seien m, n [mm] \in \IN [/mm] mit m, n > 1 und ggT(m, n) = 1. Beweisen Sie, dass [mm] m^{\phi(n)} [/mm] + [mm] n^{\phi(m)} \equiv [/mm] 1 (mod mn) ist.

Hallo,

ich weiß hier leider nicht mehr weiter. Ich denke, man müsste irgendwie zeigen können, dass ggT(mn, [mm] m^{\phi(n)} [/mm] + [mm] n^{\phi(m)}) [/mm] = 1. Aber wie? Oder führt hier ein anderer Weg weiter?

Gruß und Danke,
Martin

        
Bezug
Kongruenz Eulersche Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:56 Fr 06.11.2020
Autor: statler


> Seien m, n [mm]\in \IN[/mm] mit m, n > 1 und ggT(m, n) = 1. Beweisen
> Sie, dass [mm]m^{\phi(n)}[/mm] + [mm]n^{\phi(m)} \equiv[/mm] 1 (mod mn) ist.

Hallo,

>  
> ich weiß hier leider nicht mehr weiter. Ich denke, man
> müsste irgendwie zeigen können, dass ggT(mn, [mm]m^{\phi(n)}[/mm]
> + [mm]n^{\phi(m)})[/mm] = 1. Aber wie? Oder führt hier ein anderer
> Weg weiter?

ggT(mn, [mm]m^{\phi(n)}[/mm]  + [mm]n^{\phi(m)})[/mm] = 1 ist klar, reicht aber erstmal nicht. Wenn p|m, dann p [mm] $\nmid$ [/mm] n und folglich auch p [mm] $\nmid$ [/mm] ([mm]m^{\phi(n)} + n^{\phi(m)}[/mm])
Die Exponenten spielen also eine Rolle.

Gruß Dieter



Bezug
                
Bezug
Kongruenz Eulersche Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:30 Fr 06.11.2020
Autor: sancho1980

Hallo,
hast du noch einen weiteren Tipp für mich?
Danke und Gruß,
Martin

Bezug
                        
Bezug
Kongruenz Eulersche Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Fr 06.11.2020
Autor: statler

siehe unten

Bezug
        
Bezug
Kongruenz Eulersche Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:33 Fr 06.11.2020
Autor: statler


> Seien m, n [mm]\in \IN[/mm] mit m, n > 1 und ggT(m, n) = 1. Beweisen
> Sie, dass [mm]m^{\phi(n)}[/mm] + [mm]n^{\phi(m)} \equiv[/mm] 1 (mod mn) ist.

Nach Lage der Dinge ist jedenfalls
[mm]m^{\phi(n)}[/mm] + [mm]n^{\phi(m)} \equiv[/mm] 0 + 1 [mm] $\equiv$ [/mm] 1 (mod m)
und
[mm]m^{\phi(n)}[/mm] + [mm]n^{\phi(m)} \equiv[/mm] 1 + 0 [mm] $\equiv$ [/mm] 1 (mod n)
Aber dann ist auch
[mm]m^{\phi(n)}[/mm] + [mm]n^{\phi(m)} \equiv[/mm] 1 (mod mn),
da (m, n) = 1.

Gruß Dieter

Bezug
                
Bezug
Kongruenz Eulersche Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:44 Fr 06.11.2020
Autor: sancho1980

Hallo,
ich muss hier nochmal nerven:

>  Aber dann ist auch
>  [mm]m^{\phi(n)}[/mm] + [mm]n^{\phi(m)} \equiv[/mm] 1 (mod mn),
>  da (m, n) = 1.

Wie kann man das sehen? Welche Regel kommt hier beim letzten Schritt zum Tragen?

Gruß und Danke,
Martin

Bezug
                        
Bezug
Kongruenz Eulersche Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:57 Fr 06.11.2020
Autor: statler

Mahlzeit!
>  
> >  Aber dann ist auch

>  >  [mm]m^{\phi(n)}[/mm] + [mm]n^{\phi(m)} \equiv[/mm] 1 (mod mn),
>  >  da (m, n) = 1.
>  
> Wie kann man das sehen? Welche Regel kommt hier beim
> letzten Schritt zum Tragen?

[mm] $m^{\phi(n)} [/mm] + [mm] n^{\phi(m)} [/mm] - 1$ ist durch m und durch n teilbar, dann ist es wegen (m, n) = 1 auch durch das Produkt teilbar. m und n haben verschiedene Primfaktoren!

Jetzt klarer?

Bezug
                                
Bezug
Kongruenz Eulersche Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:21 Fr 06.11.2020
Autor: sancho1980

Ja stimmt...
Das las sich vorhin wie so eine "geläufige" Rechenregel, aber in meinem Skript konnte ich das nirgends finden. Aber wenn ich so drüber nachdenke; halten wir fest:

Sei [mm] {p_{m_1}}^{e_{m_1}} \cdots {p_{m_x}}^{e_{m_x}} [/mm] die kanonische Primfaktorzerlegung von m und [mm] {p_{n_1}}^{e_{n_1}} \cdots {p_{n_y}}^{e_{n_y}} [/mm] die kanonische Primfaktorzerlegung von n. Wegen ggt(m,n) = 1 gilt [mm] ((p_{m_1} \not= p_{n_1}) \land \ldots \land (p_{m_1} \not= p_{n_y})) \land \ldots \land ((p_{m_x} \not= p_{n_1}) \land \ldots \land (p_{m_x} \not= p_{n_y})). [/mm] Dann folgt aus ((m [mm] \vert [/mm] a) [mm] \land [/mm] (n [mm] \vert [/mm] a)) dass ((m [mm] \vert \frac{a}{n}) \land [/mm] (n [mm] \vert \frac{a}{m})) [/mm] und damit auch mn [mm] \vert [/mm] a.

Super, danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de