www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Kongruenzen
Kongruenzen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kongruenzen: Vereinfachen
Status: (Frage) beantwortet Status 
Datum: 11:40 Di 24.06.2008
Autor: jura

Aufgabe
Vereinfachen Sie folgende Kongruenzen!
a) 64 [mm] \equiv [/mm] 40 (12)
b) 21 [mm] \equiv [/mm] 6 (15)
c) -45 [mm] \equiv [/mm] 60 (7)

hallo!
ich habe ehrlich gesagt keinen richtigen überblick, welche möglichkeiten ich habe, um zu vereinfachen- habe mal gehört "durch den ggT teilen"- aber dies stimmt leider nicht bei allen bsp....oder irgendetwas subtrahieren...???
vielen dank für eure hilfe, gruß!

        
Bezug
Kongruenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:23 Di 24.06.2008
Autor: Kyrill

Hi,

ich denke das mit Vereinfachen gemeint ist, dass du die Zahlen "verkleinerst".

Das modulo bedeutet soviel wie:  Man nennt zwei Zahlen kongruent bezüglich eines Moduls (eine weitere Zahl), wenn sie bei Division durch den Modul denselben Rest haben.

Das beudetet, du kannst einfach ganzzahlige Vielfache der "modul"-Zahl zu den anderen Zahlen addieren oder subtrahieren.

Ein Beispiel dazu bei deiner Nummer a)
Es gilt: 64 [mm]\equiv[/mm] 40 (12)
Jetzt kannst du ein ganzzahliges Vielfaches von 12 von den Zahlen abziehen.

z.B.: Es gilt auch 52 [mm]\equiv[/mm] 40 (12)
oder 40 [mm]\equiv[/mm] 40 (12)
man kann aber auch 64 [mm]\equiv[/mm] 28 (12)
oder 52 [mm]\equiv[/mm] 28 (12)

Du kannst also unabhängig von den beiden Seiten ganzzahlige Vielfache abziehen.

Mit vereinfachen ist wahrscheinlich gemeint, dass du möglichst kleine Zahlen erreichst.

Im Bespiel von deiner Nummer a) wäre dies:

4 [mm]\equiv[/mm] 4 (12)

Jetzt kannst du es mal bei den anderen Aufgaben versuchen.

Gruß

Kyrill


Bezug
                
Bezug
Kongruenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:02 Di 24.06.2008
Autor: jura

ok, gut!
bei b) wäre das dann also 6 [mm] \equiv [/mm] 6(15)
und bei c) 4 [mm] \equiv [/mm] 4(7)
stimmts?

Bezug
                        
Bezug
Kongruenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 Di 24.06.2008
Autor: angela.h.b.


> ok, gut!
>  bei b) wäre das dann also 6 [mm]\equiv[/mm] 6(15)
>  und bei c) 4 [mm]\equiv[/mm] 4(7)
>  stimmts?

Hallo,

stimmen tut das schon, aber diese "Vereinfachungen" sind doch echt bescheuert  - was nicht an Deiner Rechnung liegt, sondern daran, daß  der Auftrag "vereinfache" etwas nebulös ist.

Sind das wirklich die originalen Aufgaben? Kein x drin oder so?

Gruß v. Angela






Bezug
                                
Bezug
Kongruenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 Di 24.06.2008
Autor: jura

neinnein, die aufgaben lauten wirklichso! sobald dann ein x auftaucht, muss man ja BERECHNEN- aber hier soll wirklich nur vereinfacht werden!
was dachtest du denn weiter?

Bezug
                                        
Bezug
Kongruenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 Di 24.06.2008
Autor: abakus


> neinnein, die aufgaben lauten wirklichso! sobald dann ein x
> auftaucht, muss man ja BERECHNEN- aber hier soll wirklich
> nur vereinfacht werden!
>  was dachtest du denn weiter?

Hallo,
ich könnte mir vorstellen, dass mit "Vereinfache..." gemeint war "Vereinfache durch Division ..."
(mit Anwendung der dabei geltenden Regeln).
Aus ac [mm] \equiv [/mm] bc mod m folgt a [mm] \equiv [/mm] b mod [mm] \bruch{m}{d}, [/mm] wobei d der ggT von m und c ist.
Gruß Abakus

Bezug
                                                
Bezug
Kongruenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:58 Di 24.06.2008
Autor: jura

gut, dass du diese regel ansprichst, die habe ich auch gelesen und verstehe sie nicht so ganz: was ist beispielsweise in meiner aufgabe das c und was das a....? oder kannst du die regel evtl in worte fassen?

Bezug
                                                        
Bezug
Kongruenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:04 Di 24.06.2008
Autor: abakus


> gut, dass du diese regel ansprichst, die habe ich auch
> gelesen und verstehe sie nicht so ganz: was ist
> beispielsweise in meiner aufgabe das c und was das a....?
> oder kannst du die regel evtl in worte fassen?

Du kannst in Teilaufgabe a) beide Seiten durch 8 teilen, c ist also hier 8.
Gruß Abakus


Bezug
                                                                
Bezug
Kongruenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:22 Mi 25.06.2008
Autor: jura

ok, danke!
ist c also (immer) der ggt der beiden zahlen a,b?
allerdings teilt man doch laut deiner regel noch m durch den ggt d- das haben wir hier nicht gemacht: das ergebnis lautete ja 4 [mm] \equiv [/mm] 4(12).
und mir fällt gerade auf: der ggt (64,40) ist ja 8, teilt jedoch nicht 12!!!

was ist nun die richtige lösung!?


Bezug
                                                                        
Bezug
Kongruenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Mi 25.06.2008
Autor: angela.h.b.


> ok, danke!
> ist c also (immer) der ggt der beiden zahlen a,b?
>  allerdings teilt man doch laut deiner regel noch m durch
> den ggt d- das haben wir hier nicht gemacht: das ergebnis
> lautete ja 4 [mm]\equiv[/mm] 4(12).
>  und mir fällt gerade auf: der ggt (64,40) ist ja 8, teilt
> jedoch nicht 12!!!
>  
> was ist nun die richtige lösung!?
>  

Hallo,

Du sprichst also über [mm] 64\equiv [/mm] 40 (12).

Ich habe das Gefühl, daß Du überhaupt nicht verstanden hast, was das bedeutet.
Es bedeutet, daß 64 und 40 bei Division durch 12 denselben Rest lassen. Rechne es nach.
Du kannst 64 schreiben als 5*12+4 und 40 als 3*12+4, also stimmt es, daß  [mm] 64\equiv [/mm] 40 (12).

Und diese Aussage ist gleichbedeutetnd mit  [mm] 4\equiv [/mm] 4 (12), weil ja 64 und 40 beide den Rest 4 lassen.

(14=2*7 ist ja auch äquivalent zu 0=0, was wiederum äquivalent zu 137=137 ist. Wobei die Aussage 14=2*7  die interessante ist, und die Äquivalenz zu Selbstverständlichem einem nur die Richtigkeit der Aussage bestätigt.)


Interessanter ist die Sache mit der Dividiererei.

[mm] 64\equiv [/mm] 40 (12)   <==>  [mm] 8*8\equiv [/mm] 5*8 (12),  und der ggT von 8 und 12 ist 4.

Also erhältst Du mit dem, was abakus Dir gesagt hat :  [mm] 64\equiv [/mm] 40 (12)  <==> [mm] 8\equiv [/mm] 5 (12:4)  <==> [mm] 8\equiv [/mm] 5 (3)


Welches Ergebnis Du angeben sollst, hängt davon ab, was der Aufgabesteller von Dir verlangt.

Sicher ist  [mm] 64\equiv [/mm] 40 (12)  <==>  [mm] 8\equiv [/mm] 5 (3)  etwas  interessanter als  [mm] 64\equiv [/mm] 40 (12)  <==>  [mm] 4\equiv [/mm] 4 (12) .

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de