www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Konsistenzuordnung Runge-Kutta
Konsistenzuordnung Runge-Kutta < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konsistenzuordnung Runge-Kutta: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:03 Mo 18.11.2013
Autor: Trolli

Hallo,

ich bin seit einer Woche krank und habe mir die Numerik Vorlesung kopieren lassen. Zu einem Thema habe ich ein paar Fragen, da die Kopie an manchen Stellen nicht gut lesbar ist.
Es geht um die Koeffizientenbestimmung expliziter Runge-Kutta-Verfahren. Einige Indexierungen sind nicht richtig zu erkennen und ich würde gerne wissen ob meine korrekt sind. Habe leider zurzeit keine Möglichkeiten meine Kommilitonen zu fragen.


Das Butcher Tableau ist wie auf Wikipedia gegeben []Link
Hier beginnt das Skript:
Damit ein explizites RK-Verfahren für $y'=f(t,y)$ und für die autonomisierte Gleichung $y'=F(y), [mm] y=\vektor{y\\t}, F(y)=\vektor{f(t,y)\\1}$ [/mm]
äquivalent ist, muss gelten (h ist die Schrittweite):
[mm] $t_{n-1}+c_i*h=t_{n-1}+\summe_{j=1}^{i-1}a_{ij}*1$ [/mm]
d.h. [mm] $c_i=\summe_{j=1}^{i-1}a_{ij}$ [/mm] (1)

Betrachte 2-stufiges Verfahren, nur 1. Schritt:
[mm] $k_1=f(y_0)$ [/mm]
[mm] $k_2=f(y_0+ha_{21}k_1)$ [/mm]
[mm] $y_1=y_0+h(b_1k_1+b_2k_2)$ [/mm]

Taylor-Entwicklung:
[mm] $k_1=f(y_0)$ [/mm]
[mm] $k_2=f(y_0)+f_y(y_0)ha_{21}k_1+O(h^2)=f(y_0)+f_y(y_0)+ha_{21}f(y_0)+O(h^2)$ [/mm]
[mm] $y_1=y_0+h(b_1k_1+b_2k_2)=y_0+h(b_1f(y_0)+b_2(f(y_0)+f_y(y_0)+ha_{21}f(y_0)+O(h^2)))$ [/mm]
[mm] $=y_0+h(b_1+b_2)f(y_0)+h^2b_2a_{21}f_y(y_0)f(y_0)+O(h^3)$ [/mm]

Taylor für exkate Lösung:
[mm] $y(t_1)=y(t_0+h)=y(t_0)+hy'(t_0)+\frac{1}{2}h^2y''(t_0)+O(h^3)$ [/mm]
[mm] $=y(t_0)+hf(y_0)+\frac{1}{2}h^2f_y(y_0)f(y_0)+O(h^3)$ [/mm]

Betrachte für die Konsitenzordnung:
[mm] $T_1(h)=\frac{y(t_1)-y_0}{h}-\frac{y_1-y_0}{h}$ [/mm]
[mm] $=y'(t_0)+\frac{1}{2}hf_y(y_0)f(y_0)-((b_1+b_2)f(y_0)+hb_2a_{21}f_y(y_0)f(y_0))+O(h^2)$ [/mm] (2)

Bedingungen für Ordnung 2:
[mm] $b_2*a_{21}=\frac{1}{2}$ [/mm]
[mm] $b_1+b_2=1$ [/mm]
Ende Skript


Nun noch 2 Fragen. Wo ist das h bei (1) geblieben, es müsste doch noch da sein oder?
Bei (2) bin ich mir nicht sicher ob das korrekt ist. Setzt man die Bedingungen ein erhält man [mm] $y'(t_0)-f(y_0)$. [/mm] Ist dass das Ziel? Wäre nett wenn mir das jemand kurz erklären kann.

Schonmal vielen Dank für Hilfe.


Edit: [mm] $y'(t_0)$ [/mm] ist ja wieder [mm] $f(y_0)$ [/mm] oder? Dann steht ja da [mm] $T_1(h)=...=O(h^2)$ [/mm] und dadurch hat man die Ordnung 2. Ist das so gemeint?

        
Bezug
Konsistenzuordnung Runge-Kutta: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mi 20.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de