Konstruktion von Pushouts < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich hätte eine Verständnisfrage zur Existenz von Pushouts in der Kategorie von topologischen Räumen. Seien topologische Räume und für . Dann habe ich im Internet und in Büchern sehr oft gefunden, dass das (bis auf Homöomorphie eindeutige) zugehörige Pushout konstruiert werden kann, indem man auf der disjunkten Vereinigung die von erzeugte Äquivalenzrelation betrachtet. Aber wie genau sieht die Äquivalenzrelation aus? Normalerweise induziert eine Äquivalenzrelation eine Partition auf der zu betrachteten Menge (in diesem Fall auf <math> [mm] X_1 \sqcup X_2), [/mm] aber ich sehe irgendwie nicht, wie die Äquivalenzklassen aussehen sollen... Kann mir da jemand weiterhelfen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Liebe Grüße,
quizzle
|
|
|
|
Hallo,
es ist im Allgemeinen ein sehr schwieriges Problem, die erzeugte Äquivalenzrelation einer beliebigen Relation zu beschreiben. Da der Vergissfunktor [mm] $\mathbf{Top}\longrightarrow\mathbf{Set}$ [/mm] einen Rechtsadjungierten (und einen Linksadjungierten) hat, ist er kostetig (und stetig). Die Frage hat daher nichts mit topologischen Räumen zu tun, sondern beschäftigt sich eigentlich nur mit den unterliegenden Mengen.
Wenn [mm] $\sim$ [/mm] eine Relation ist, und [mm] $\langle\sim\rangle$ [/mm] die erzeugte Äquivalenzrelation, dann gilt [mm] $x\langle\sim\rangle [/mm] y$ genau dann, wenn es eine Folge [mm] $x=x_1,\dots,x_n=y$ [/mm] gibt, sodass stets [mm] $x_i\sim x_{i+1}$ [/mm] oder [mm] $x_{i+1}\sim x_i$. [/mm] Für $n=1$ erzwingt das die Reflexivität, das "oder" erzwingt die Symmetrie und die Folge erzwingt die Transitivität.
Eine bessere Beschreibung kann man im Allgemeinen nicht erwarten.
Liebe Grüße,
UniversellesObjekt
|
|
|
|