www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Konstruktion von Testsplines
Konstruktion von Testsplines < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konstruktion von Testsplines: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:53 Mo 20.04.2009
Autor: grenife

Aufgabe
Wie kann ich Splines mit samt ihrer B-Spline-Koeffizienten konstruieren, deren Nullstellen ich exakt kenne.

Hallo zusammen,

ich suche für meine Abschlussarbeit zur Nullstellenberechnung von Splines ein paar Testfunktionen, an denen ich meine untersuchten Verfahren ausprobieren kann. Ich frage mich aber gerade, wie ich am besten Splines nur aus vorgegebenen Nullstellen konstruieren kann. Bei Polynomen ist es ja recht einfach, Nullstellen wählen, Linearfaktoren bilden, Produkt symbolisch ausrechnen lassen und ich erhalte die Taylorkoeffizienten. Aber wie kann ich das am günstigsten bei Splines machen, also nur die Nullstellen vorgeben und hieraus entsprechende B-Spline-Koeffizienten berechnen? Das Aneinanderhängen von Polynomstücken erscheint mir recht mühselig und wüsste auf den ersten Blick auch kein algorithmisches Vorgehen hierfür.

Vielen Dank für Eure Tipps und viele Grüße
Gregor

        
Bezug
Konstruktion von Testsplines: Antwort
Status: (Antwort) fertig Status 
Datum: 04:04 Fr 24.04.2009
Autor: felixf

Hallo!

> Wie kann ich Splines mit samt ihrer B-Spline-Koeffizienten
> konstruieren, deren Nullstellen ich exakt kenne.

Deine B-Spline ist doch von der Art $g(x) = [mm] \sum_{i=0}^{n-m} f_i b_{i,n}(t) I_{[t_{n-1}, t_{m-n}]}(x)$, [/mm] wobei die [mm] $f_i$ [/mm] die Parameter sind und [mm] $I_{[a,b]}(x) [/mm] = [mm] \begin{cases} 1 & \text{falls } x \in [a, b] \\ 0 & \text{sonst} \end{cases}$ [/mm] die Indikatorfunktion, und [mm] $b_{i,n}(t)$ [/mm] die Basisfunktionen.

Wenn du jetzt an der Stelle [mm] $t_i$ [/mm] den Wert 0 haben willst, $i = 0, [mm] \dots, [/mm] k$ (und die [mm] $t_i$ [/mm] sind konkret gegeben), dann bekommst du doch ein Gleichungssystem:

[mm] $g(t_i) [/mm] = 0$, $i = 0, [mm] \dots, [/mm] k$

Dieses ist linear mit den Unbestimmten [mm] $f_0, \dots, f_{n-m}$. [/mm]

Also stell es einfach auf und loese es. Eine triviale Loesung ist natuerlich [mm] $f_i [/mm] = 0$ fuer alle $i$, und du bist wohl eher an nicht-trivialen Loesungen interessiert. Da alle Loesungen im Kern einer Matrix liegen (die sich aus dem LGS ergibt) kannst du einfach eine Basis vom Kern berechnen und damit verschiedene nicht-triviale Elemente linear kombinieren.

LG Felix



PS: Das ist eigentlich genau die gleiche Methode, die man auch bei der Polynominterpolation verwendet -- nur das man da auch gern man explizite Loesungsformeln nimmt, wie die Lagrange-Interpolation. Sowas laesst sich vermutlich hier auch herleiten, aber warum so kompliziert wenn etwas LGS loesen auch zum Ziel fuehrt :)


Bezug
                
Bezug
Konstruktion von Testsplines: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:22 Sa 25.04.2009
Autor: grenife

Hallo Felix,

vielen Dank erstmal für Deine Nachricht. Die Idee klingt einleuchtend, nur das Problem ist das Folgende: ich benötige die Testsplines, um ein Verfahren zur Nullstellenberechnung mit Hilfe des Kontrollpolygons zu testen, und in Deiner Variante hätten ja Kontrollpolygon UND Spline sofort bei [mm] $t_i$ [/mm] eine Nullstelle. Ich fürchte, das würde es dem Verfahren ein wenig zu leicht machen.:-)

Ich glaube besser wäre es wohl, wenn ich Polynomstücke aneinander pappen würde, nur wie kann ich das algorithmisch am besten machen? Das Unterteilen geht mit de Casteljau/de Boor, aber wie kann ich das genau umgekehrt machen?

Viele Grüße
Gregor

Bezug
                        
Bezug
Konstruktion von Testsplines: Antwort
Status: (Antwort) fertig Status 
Datum: 09:29 Sa 25.04.2009
Autor: felixf

Hallo Gregor!

Ich glaub da hab ich mich in meiner Nachricht ziemlich schlecht ausgedrueckt: die [mm] $t_i$ [/mm] oben sind schon die Stuetzstellen, die [mm] $t_i$ [/mm] unten bei den Bedingungen [mm] $g(t_i) [/mm] = 0$ koennen (bzw sollen) andere [mm] $t_i$ [/mm] sein :)

Wenn du sie anders waehlst machst du es deinem Verfahren auch nicht zu leicht ;-)

> Ich glaube besser wäre es wohl, wenn ich Polynomstücke
> aneinander pappen würde, nur wie kann ich das algorithmisch
> am besten machen? Das Unterteilen geht mit de Casteljau/de
> Boor, aber wie kann ich das genau umgekehrt machen?

Da kann ich dir nicht mit weiterhelfen, dazu kenn ich mich zu wenig mit der Materie aus...

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de