www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Kontrolle
Kontrolle < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kontrolle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 Fr 27.02.2009
Autor: Dinker

Guten Nachmittag

Ich bin mir gerade sehr unsicher, ob ich da richtig vorgegangen bin, oder total falsch liege. Deshalb wäre ich dankbar, wenn sich einer die Mühe nehmen könnte drüber zu schauen.

[Dateianhang nicht öffentlich]

Bestimme Nullstellen
kx = [mm] \pi [/mm] + [mm] k\pi [/mm]

Nun kann ich hier einfach zwei nacheinander vorkommende Nullstellen nehmen. Einfachheitshalber nehme ich:
kx = 0
x = 0

kx = [mm] \pi [/mm]
x = [mm] \bruch{\pi}{x} [/mm]

f(x) = sin (kx)      
F(x) = -k cos(kx)

8 = -k cos [mm] \pi [/mm]
8 = -k
k = -8

Besten Dank
Gruss Dinker

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Kontrolle: Korrekturen
Status: (Antwort) fertig Status 
Datum: 16:03 Fr 27.02.2009
Autor: Loddar

Hallo Dinker!


Du musst aufpassen. Da der Buchstabe $k_$ bereits für den Parameter der Funktion vergeben ist, muss die allgemeine Darstellung der Nullstellen z.B. lauten:
$$k*x \ = \ [mm] \red{n}*\pi$$ [/mm]
Damit ergeben sich für $n \ = \ 0$ bzw. $n \ = \ 1$ die beiden Nullstellen:
[mm] $$x_1 [/mm] \ = \ 0$$
[mm] $$x_2 [/mm] \ = \ [mm] \bruch{\pi}{k}$$ [/mm]

Dann hast Du falsch integriert. Es muss heißen:
[mm] $$F_k(x) [/mm] \ = \ [mm] -\bruch{1}{k}*\cos(k*x)$$ [/mm]

Weitere "Falle": der Funktionswert der Stammfunktion [mm] $F_k(x) [/mm] \ = \ [mm] -\bruch{1}{k}*\cos(k*x)$ [/mm] an der Stelle $x \ = \ 0$ ist nicht 0:
[mm] $$F_k(0) [/mm] \ = \ [mm] -\bruch{1}{k}*\cos(k*0) [/mm] \ = \ [mm] -\bruch{1}{k}*\cos(0) [/mm] \ = \ [mm] -\bruch{1}{k}*1 [/mm] \ = \ [mm] -\bruch{1}{k}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Kontrolle: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:14 Fr 27.02.2009
Autor: Dinker

Hallo Loddar
Besten Dank

> Hallo Dinker!
>  
>
> Du musst aufpassen. Da der Buchstabe [mm]k_[/mm] bereits für den
> Parameter der Funktion vergeben ist, muss die allgemeine
> Darstellung der Nullstellen z.B. lauten:
>  [mm]k*x \ = \ \red{n}*\pi[/mm]
>  Damit ergeben sich für [mm]n \ = \ 0[/mm]
> bzw. [mm]n \ = \ 1[/mm] die beiden Nullstellen:
>  [mm]x_1 \ = \ 0[/mm]
>  [mm]x_2 \ = \ \bruch{\pi}{k}[/mm]
>  
> Dann hast Du falsch integriert. Es muss heißen:
>  [mm]F_k(x) \ = \ -\bruch{1}{k}*\cos(k*x)[/mm]

Ups, ich hab statt die Stammfunktion die Ableitung bestimmt, wie konnte mir das nur passieren...

Also ich substitutioniert mal: z = kx
f(x) = sinz
F(x) = -cos z
F(x) = -cos (z)
F(x) = [mm] -\bruch{1}{k}cos(kx) [/mm]



>  
> Weitere "Falle": der Funktionswert der Stammfunktion [mm]F_k(x) \ = \ -\bruch{1}{k}*\cos(k*x)[/mm]
> an der Stelle [mm]x \ = \ 0[/mm] ist nicht 0:
>  [mm]F_k(0) \ = \ -\bruch{1}{k}*\cos(k*0) \ = \ -\bruch{1}{k}*\cos(0) \ = \ -\bruch{1}{k}*1 \ = \ -\bruch{1}{k}[/mm]

10 = - [mm] \bruch{1}{k} [/mm] * cos [mm] (\pi) [/mm] + [mm] \bruch{1}{k} [/mm]
10 = -cos [mm] \pi [/mm] + 1
10k = 2
k = [mm] \bruch{1}{5} [/mm]

>  
> Gruß
>  Loddar
>  

Gruss Dinker


Bezug
                        
Bezug
Kontrolle: nun richtig
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:18 Fr 27.02.2009
Autor: Loddar

Hallo Dinker!


So stimmt es nun. Dieses Ergebnis habe ich auch erhalten.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de