www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergent oder Divergent
Konvergent oder Divergent < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergent oder Divergent: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 Sa 01.04.2006
Autor: Dami

Aufgabe 1
  [mm] \summe_{n=1}^{\infty} [/mm] n-1/3n+1

Aufgabe 2
  [mm] \summe_{n=1}^{\infty}n3-^n [/mm]

Aufgabe 3
  [mm] \summe_{n=1}^{\infty} [/mm] n/3n²-1

Aufgabe 4
  [mm] \summe_{i=n}^{\infty}(-1)^n/2n-1 [/mm]

Welche der folgenden Reihen sinde divergent, welche konvergent und welche absolut konvergent? Es soll mit Antwort bewiesen werden.

Ich würde dankbar sein, wenn jemand mir weiter helfen würde.

Vielen Dank,
Dami

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Konvergent oder Divergent: Konvergenzkriterien
Status: (Antwort) fertig Status 
Datum: 22:02 Sa 01.04.2006
Autor: Loddar

Hallo Dami!


Wie sieht es denn mit Deinen eigenen Lösungsansätzen aus?

Sieh doch mal in der Mathebank unter MBKonvergenzkriterium (oder auch in der []Wikipedia) ...


Aufgabe 1

Ist hier das notwendige Kriterium (aufzusummierende Folge ist Nullfolge) erfüllt?


Aufgabe 2

Meinst Du hier die Folge [mm] $n*3^{-n} [/mm] \ = \ [mm] \bruch{n}{3^n}$ [/mm] ?

Dann kannst Du sowohl mit dem Quotientenkriterium als auch mit dem Wurzelkriterium vorgehen.


Aufgabe 3

Hier habe ich noch kein Ergebnis, rate aber zu Minorantenkriterium bzw. Majorantenkriterium.


Aufgabe 4

Da es sich hier um eine alternierende Folge handelt, schreit das ja förmlich nach dem Leibniz-Kriterium .


Gruß
Loddar


Bezug
                
Bezug
Konvergent oder Divergent: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:25 So 02.04.2006
Autor: Dami

Aufgabe
Aufgabe 1


[mm] \summe_{n=1}^{\infty}\bruch{n-1}{3n+1} [/mm]

[mm] =>\bruch{1-\bruch{1}{n}}{3+\bruch{1}{n}} [/mm]
[mm] =>\bruch{1-0}{3+0}= \bruch{1}{3} [/mm]
ist konvergent
stimmt es ??

Bezug
                        
Bezug
Konvergent oder Divergent: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 So 02.04.2006
Autor: dormant

Hallo!

Die Folge [mm] a_{n}:=\bruch{n-1}{3n+1} [/mm] konvergiert gegen 1/3 konvergiert, das stimmt schon. Du willst aber wissen, ob die Reihe [mm] \summe_{n=1}^{\infty}a_{n}=\summe_{n=1}^{\infty}\bruch{n-1}{3n+1} [/mm] konvergiert. Wie Loddar schon geschrieben hat muss die Folge [mm] a_{n} [/mm] gegen null konvergieren, damit [mm] \summe_{n=1}^{\infty}a_{n} [/mm] konvergieren kann (muss aber nicht).

Gruß,
dormant

Bezug
        
Bezug
Konvergent oder Divergent: Zu (3) schliesslich
Status: (Antwort) fertig Status 
Datum: 22:53 Sa 01.04.2006
Autor: topotyp

Bei (3) kann man die Reihe mit der divergenten [mm] \sum \frac{1}{n} [/mm]
vergleichen und erhält also ...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de