www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Konvergente Folge
Konvergente Folge < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergente Folge: Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:47 Do 24.11.2005
Autor: Niente

Hallo,

ich komme bei der folgenden Aufgabe einfach nicht vorwärts:
Sei [mm] (a_{n}) [/mm] eine gegen a konvergente Folge, [mm] a_{n}\ge [/mm] 0 [mm] \forall [/mm] n [mm] \in \IN [/mm]
zeige: ( [mm] \wurzel{a_{n}})_{n} [/mm] konvergiert gegen  [mm] \wurzel{a} [/mm]
Hinweis: ( [mm] \wurzel{a_{n}} [/mm] -  [mm] \wurzel{a})( \wurzel{a_{n}}+\wurzel{a})= a_{n} [/mm] - a.

Also:  [mm] \forall \varepsilon [/mm] >0   [mm] \exists [/mm] N [mm] \in \IN \forall [/mm] n [mm] \ge [/mm] N:
[mm] |a_{n}-a|=| [/mm] ( [mm] \wurzel{a_{n}} [/mm] -  [mm] \wurzel{a}) (\wurzel{a_{n}}+\wurzel{a}) [/mm] < [mm] \varepsilon [/mm]

wie gehe ich nun weiter an die Aufgabe heran?
Ich komme leider GAR nicht vorwärts;(. Wie kann ich denn jetzt N bestimmen?

Ich hoffe.es kann mir jemand weiterhelfen, lieben Dank schon einmal



wie soll ich denn jetzt weitermachen? Ich verstehe nicht, wie ich N bestimmen soll.
Vielen Dnak im Voraus
liebe Grüße

        
Bezug
Konvergente Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Do 24.11.2005
Autor: Franzie

Hallöchen!
versuch doch aml die dritte binomische fornel auf den wurzelausdruck anzuwenden!

liebe grüße

Bezug
                
Bezug
Konvergente Folge: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 07:51 Fr 25.11.2005
Autor: Niente

Hallo,

danke für die Anwort. Ich habe in dem Hinweis auf dem Aufgabenzettel schon eine dritte binomische Formel. Soll ich darauf nochmal eine anwenden? Das bringt mich irendwie ncht viel weiter.... dann habe ich -sofern ich auf meinen Wurzelausdruck in meinem ersten Posting nochmal eine binom. Formel anwende:

[mm] |\wurzel{a_{n}}- \wurzel{a}|< \varepsilon \bruch{|\wurzel{a_{n}}- \wurzel{a}|}{a_{n}-a} [/mm]
das bringt mich aber leider nich weiter. Ich brauche in meiner (Un-)Gleichung doch irgedwo ein n, damit ich N bestimmen kann... HILFE!!! Was kann ich tun?
Danke!!!!!

ja schon die

Bezug
                        
Bezug
Konvergente Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Fr 25.11.2005
Autor: leduart

Hallo
Was du [mm] weisst:|an-a|<\varepsilon1 [/mm] für n>N1 das ist Vors.
dabei kannst du [mm] \varepsilon1 [/mm] beliebig>0 einsetzen .
jetzt hast du damit zu zeigen dass unter dieser Bedingung auch:
[mm] |\wurzel{an}-\wurzel{a}|<\varepsilon. [/mm] dabei kann man [mm] \varepsilon1 [/mm] anders als [mm] \varepsilon [/mm] wählen, also geschickt.
Bei dem [mm] \varepsilon [/mm] darf natürlich kein n mehr vorkommen.
Also benutz die Vors. um [mm] |\wurzel{an}-\wurzel{a}| [/mm] abzuschätzen und änder am Schluss [mm] \varepsilon1 [/mm]
Gruss leduart



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de