www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Konvergente Folgen
Konvergente Folgen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergente Folgen: Verständnissprobleme
Status: (Frage) beantwortet Status 
Datum: 11:43 So 20.11.2005
Autor: Mihi

Hi Leute,
dies ist die erste Frage, die ich einschicke,obwohl ich schon dutzende hätte stellen können.
Es geht um folgende Aufgabe:

Zeige, dass die Folge [mm] a(n)=(n^2+1) /n^2+n+1 [/mm] (n=1,2,3,...)
den Grenzwert 1 hat, indem sie zu jedem  [mm] \varepsilon [/mm] >0 ein n( [mm] \varepsilon) [/mm] angeben, sodass gilt [mm] |a_{n}-1 |<\varepsilon [/mm] für alle natürlichen Zahlen [mm] n>n(\varepsilon) [/mm]
Ich kann mir schon vorstellen wie die Folge als Abbildung aussieht. Eine Idee von mir: Eine folge ist eine bijektive Abb.  [mm] \IN [/mm] auf [mm] a_{n} [/mm] ist.
Muss ich dann einfach die Umkehrabb. bilden sodass ich dann eine Abb der Folgeglieder auf die nat. Zahlen habe??? Also die n in der Gleichun durch [mm] a_{n} [/mm] ersetze?
Eine zweite Frage: Was ist der Unterschied zwischen dem Begriff Grenzwert und der konstanten C gegen die eine Beschränkte Folge strebt oder ist dies bloß eine Art Supremum oder ein Hoch- oder Tiefpunkt der "Folgenabbildung".
Ihr seht ich bin total im Dunklen, was nicht zuletzt den Proffessoren zuzuschreiben ist, die alles"Trivial" finden und ihre Vorlesung runterbeten und den Studenten mit oberkomplizierten Beweisen und abstrakt formulierten Sätzen abspeisen. Das Verständnis, das Handwerkszeug, ist so mit Nichten gegeben.
Im Voraus ein Dank an die Beantwortung.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Konvergente Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:22 So 20.11.2005
Autor: SEcki


> Zeige, dass die Folge [mm]a(n)=(n^2+1) /n^2+n+1[/mm] (n=1,2,3,...)
>  den Grenzwert 1 hat, indem sie zu jedem  [mm]\varepsilon[/mm] >0
> ein n( [mm]\varepsilon)[/mm] angeben, sodass gilt [mm]|a_{n}-1 |<\varepsilon[/mm]
> für alle natürlichen Zahlen [mm]n>n(\varepsilon)[/mm]

Ich hoffe, da fehlt oben im zweiten Teil eine Klammer, also [m](n^2+n+^)[/m]. Dann gehe wie folgt vor: mache zeurst eine Polynomdivision, bzw. bringe [m]\bruch{n^2+1)}{n^2+n+1}-1[/m] auf einen Nenner. Jetzt nimm dir ein beliebiges [m]\varpesilon >0[/m] und betrachte die Ungleichung, jetzt versuch ein bisschen umzuformen, zB mal mit dem Nenner multiplizieren. Irgendwann solltest du dann das Archimedische Axiom benutzen könenn - so findest du dann die Schranke [m][mm] n(\varepsilon)[7m]. [/mm]

>  Ich kann mir schon vorstellen wie die Folge als Abbildung
> aussieht. Eine Idee von mir: Eine folge ist eine bijektive
> Abb.  [mm]\IN[/mm] auf [mm]a_{n}[/mm] ist.

Die hier ja, aber im allgemeinen nein. außerdem hat es mit der aufgabe kaum was zu tun.

>  Muss ich dann einfach die Umkehrabb. bilden sodass ich
> dann eine Abb der Folgeglieder auf die nat. Zahlen habe???

Nein, hier geht es um Konvergenz.Du sollst zeigen, daß die Folge gegen 1 konvergiert.

> Also die n in der Gleichun durch [mm]a_{n}[/mm] ersetze?

Wie bitte?

>  Eine zweite Frage: Was ist der Unterschied zwischen dem
> Begriff Grenzwert und der konstanten C gegen die eine
> Beschränkte Folge strebt

soll hier beschränkt konvergent heißen? Außerdem seh ich hier keine zwei Begriffe - Grenzwerte muss man ja irgendwie abkürzen, wenn halt mit C, dann mit C.

> oder ist dies bloß eine Art
> Supremum oder ein Hoch- oder Tiefpunkt der
> "Folgenabbildung".

Das müssen nicht die Grenzwete sein. Ich glaub, du solltest (vielleicht auch auf Wikipedia und in Skripten), mal die Definitionen nachschlagen von Folgen, Grenzwerten, Supremum.

>  Ihr seht ich bin total im Dunklen, was nicht zuletzt den
> Proffessoren zuzuschreiben ist, die alles"Trivial" finden
> und ihre Vorlesung runterbeten und den Studenten mit
> oberkomplizierten Beweisen und abstrakt formulierten Sätzen
> abspeisen.

Ah, das alte Lied ... geht ja vielen so, dass sie am Anfang kaum was verstehen. Du solltest dann auchmal nachfragen - den Professor/Übungsgruppenleite/Kommilitionen/hier wenn dir besimmte Begriffe/Beweise nicht klar sind.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de