www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Konvergente Funktionen
Konvergente Funktionen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergente Funktionen: unter Normen
Status: (Frage) beantwortet Status 
Datum: 20:35 Mo 15.09.2008
Autor: sommersonne

Aufgabe
Sei V=C[0,1] und für [mm] n\in\IN [/mm] sei [mm] g_n\in [/mm] V definiert durch [mm] g_n(x)=x^n. [/mm] Untersuchen Sie für die Normen
[mm] \parallel f\parallel_1=\integral_{0}^{1}{|f(x)| dx} [/mm] und [mm] \parallel f\parallel_\infty [/mm] = [mm] \max_{x\in[0,1]}|f(x)| [/mm] auf V, ob [mm] (g_n) [/mm] konvergiert.

Hallo,

ich habe folgende Lösung:

[mm] \parallel f\parallel_1=\integral_{0}^{1}{|f(x)| dx} [/mm] =
[mm] \parallel f\parallel_1=\integral_{0}^{1}{|x^n| dx} [/mm] =
[mm] [|\bruch{x^{n+1}}{n+1}|] [/mm] =
[mm] \bruch{1^{n+1}}{n+1}-0= [/mm]
[mm] \bruch{1}{n+1} \le [/mm]
[mm] \bruch{1}{2} [/mm]

Also konvergent.


[mm] \parallel f\parallel_\infty [/mm] = [mm] \max_{x\in[0,1]}|f(x)|= |1^n|=1, [/mm] da 0 [mm] \le [/mm] x [mm] \le [/mm] 1 und [mm] n\in\IN. [/mm] D.h. umso kleiner der Wert x, umso kleiner ist der Wert von f(x).

Also konvergent.



Liebe Grüße
sommer[sunny]


        
Bezug
Konvergente Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Mo 15.09.2008
Autor: Somebody


> Sei V=C[0,1] und für [mm]n\in\IN[/mm] sei [mm]g_n\in[/mm] V definiert durch
> [mm]g_n(x)=x^n.[/mm] Untersuchen Sie für die Normen
> [mm]\parallel f\parallel_1=\integral_{0}^{1}{|f(x)| dx}[/mm] und
> [mm]\parallel f\parallel_\infty[/mm] = [mm]\max_{x\in[0,1]}|f(x)|[/mm] auf V,
> ob [mm](g_n)[/mm] konvergiert.
>  Hallo,
>  
> ich habe folgende Lösung:
>  
> [mm]\parallel f\parallel_1=\integral_{0}^{1}{|f(x)| dx}[/mm] =
>  [mm]\parallel f\parallel_1=\integral_{0}^{1}{|x^n| dx}[/mm] =
>  [mm][|\bruch{x^{n+1}}{n+1}|][/mm] =
>  [mm]\bruch{1^{n+1}}{n+1}-0=[/mm]
>  [mm]\bruch{1}{n+1} \le[/mm]
>  [mm]\bruch{1}{2}[/mm]

Ich verstehe nicht, was Dir dies bringt. Konvergenz heisst doch: Konvergenz gegen etwas. Welches ist also die (punktweise) Grenzfunktion der [mm] $g_n(x)$? [/mm] - Ich denke, es ist die Funktion

[mm]g(x) := \begin{cases} 0 & (\text{für }x\in [0;1[)\\ 1 & (\text{für }x=1) \end{cases}[/mm]

Diese Funktion ist, nebenbei bemerkt, nicht in $C[0;1]$. Damit ist eigentlich Konvergenz der [mm] $g_n$ [/mm] gegen $g$ in $C[0;1]$ schon aus dem Fenster. Aber Du kannst natürlich auch versuchen, Konvergenz gegen eine andere als die punktweise Grenzfunktion, zum Beispiel gegen [mm] $g\equiv [/mm] 0$, zu zeigen. Dann musst Du die Frage untersuchen, ob [mm] $\parallel g_n-g\parallel_1\rightarrow [/mm] 0$ gilt, für [mm] $n\rightarrow \infty$. [/mm] Für diesen Nachweis kannst Du zwar grosse Teile der obigen Überlegung verwenden, aber dennoch ist Deine Überlegung kein Beweis der Konvergenz der [mm] $g_n$ [/mm] gegen [mm] $g\equiv [/mm] 0$ bezüglich der [mm] $\parallel \;\;\parallel_1$-Norm. [/mm]

> Also konvergent.
>  
>
> [mm]\parallel f\parallel_\infty[/mm] = [mm]\max_{x\in[0,1]}|f(x)|= |1^n|=1,[/mm]
> da 0 [mm]\le[/mm] x [mm]\le[/mm] 1 und [mm]n\in\IN.[/mm] D.h. umso kleiner der Wert x,
> umso kleiner ist der Wert von f(x).
> Also konvergent.

[notok] Denn [mm] $\parallel g_n-g\parallel_{\infty}$ [/mm] konvergiert für [mm] $n\rightarrow\infty$ [/mm] nicht gegen $0$. Es ist sogar [mm] $\parallel g_n-g\parallel_{\infty}=1$, [/mm] für alle $n$.
Des weiteren ist, wie erwähnt, nicht klar, welches denn die Grenzfunktion aus $C[0;1]$ sein soll, gegen die die [mm] $g_n$ [/mm] bezüglich der [mm] $\parallel\;\;\parallel_{\infty}$-Norm [/mm] konvergieren. Die punktweise Grenzfunktion $g$ kann es jedenfalls nicht sein und auch [mm] $g\equiv [/mm] 0$ liefert nicht das gewünschte Verhalten von [mm] $\parallel g_n-g\parallel_{\infty}\rightarrow [/mm] 0$, für [mm] $n\rightarrow \infty$. [/mm]

Bezug
                
Bezug
Konvergente Funktionen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 Mo 15.09.2008
Autor: sommersonne

Hallo,

danke für deine Antwort! Du hast mir sehr weitergeholfen.

Liebe Grüße
sommer[sunny]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de