www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergente Reihe
Konvergente Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergente Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:17 Fr 18.03.2011
Autor: Loriot95

Aufgabe
Begründen Sie, dass die unendliche Reihe [mm] \summe_{n=1}^{\infty} \bruch{(-1)^{n}}{n-ln(n)}konvergiert, [/mm] dass sie aber nicht absolut konvergiert.

Guten Tag,

habe es hier mit dem Quotientenkriterium versucht, leider ohne Erfolg. Nun habe ich versucht eine konvergente Majorante zu finden. Mir fällt nur leider keine ein. Nun weiß ich nicht weiter.
Würde mich über einen Tipp freuen.

LG Loriot95

        
Bezug
Konvergente Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:23 Fr 18.03.2011
Autor: schachuzipus

Hallo Loriot,

> Begründen Sie, dass die unendliche Reihe
> [mm]\summe_{n=1}^{\infty} \bruch{(-1)^{n}}{n-ln(n)}konvergiert,[/mm]
> dass sie aber nicht absolut konvergiert.
> Guten Tag,
>
> habe es hier mit dem Quotientenkriterium versucht, leider
> ohne Erfolg. Nun habe ich versucht eine konvergente
> Majorante zu finden. Mir fällt nur leider keine ein. Nun
> weiß ich nicht weiter.
> Würde mich über einen Tipp freuen.

Für den Konvergenznachweis bietet sich doch das Leibnizkriterium an, du hast doch eine alternierende Reihe ...

Prüfe, ob die Voraussetzungen des Leibnizkriteriums erfüllt sind ...

Die Reihe der Beträge ist [mm] $\sum\limits_{n=1}^{\infty}\frac{1}{n-\ln(n)}$ [/mm]

Hier hilft das Vergleichskriterium, finde eine einfache divergente Minorante.

Tipp: [mm] $n-\ln(n)\le [/mm] n$ für [mm] $n\ge [/mm] 1$


>
> LG Loriot95

Gruß

schachuzipus

Bezug
                
Bezug
Konvergente Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:35 Fr 18.03.2011
Autor: Loriot95

Ach stimmt ja. Danke ;)

Bezug
        
Bezug
Konvergente Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Fr 18.03.2011
Autor: fred97


> Begründen Sie, dass die unendliche Reihe
> [mm]\summe_{n=1}^{\infty} \bruch{(-1)^{n}}{n-ln(n)}konvergiert,[/mm]
> dass sie aber nicht absolut konvergiert.
>  Guten Tag,
>  
> habe es hier mit dem Quotientenkriterium versucht, leider
> ohne Erfolg. Nun habe ich versucht eine konvergente
> Majorante zu finden.

Noch ein kleiner Tipp: mit dem QK oder dem WK stellst Du die absolute Konvergenz (und damit auch die Konvergenz) oder die Divergenz einer Reihe fest.
Wenn Du mit dem Majorantenkrit. erfolgreich warst, hast Du ebenfalls die absolute Konvergenz fest gestellt.

D.h. also: wenn Du zeigen sollst, dass eine Reihe konvergiert, aber nicht absolut konvergiert, so werden Dir die oben genannten Kriterien nicht helfen.

FRED

>  Mir fällt nur leider keine ein. Nun
> weiß ich nicht weiter.
>  Würde mich über einen Tipp freuen.
>  
> LG Loriot95


Bezug
                
Bezug
Konvergente Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:45 Fr 18.03.2011
Autor: Loriot95

Danke für den Hinweis.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de