www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Analysis" - Konvergenz
Konvergenz < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: in Verteilung
Status: (Frage) beantwortet Status 
Datum: 22:22 Mo 20.01.2014
Autor: Milaa

Hallo an alle,

[mm] F_(X_n) =\left\{\begin{matrix} 0, & \mbox{wenn }x\mbox{ < (1/2) -(1/n)} \\ (x-\left( \bruch{1}{2} \right)+\left( \bruch{1}{n} \right))/\left( \bruch{2}{n} \right), & \mbox{wenn } \mbox{1/2 -1/n <= x <= 1/2 +1/n} \\ 1, & \mbox{wenn}x\mbox{>1/2 +1/n} \end{matrix}\right. [/mm]

So und X = 1/2

Also [mm] F_X= =\left\{\begin{matrix} 0, & \mbox{wenn }x\mbox{< 1/2} \\ 1, & \mbox{wenn }x\mbox{ >= 1/2} \end{matrix}\right. [/mm]

Was passiert wenn ich [mm] \lim_{n \to \infty}F_(X_n) laufen [/mm] lasse?
Etwa :

[mm] F_(X_n) =\left\{\begin{matrix} 0, & \mbox{wenn }x\mbox{ < (1/2) } \\ (\left( \bruch{1}{2} \right) - \left( \bruch{1}{2} \right)+0)/ (\left( \bruch{2}{n}=0) \right), & \mbox{wenn } \mbox{1/2 <= x <= 1/2 } \\ 1, & \mbox{wenn}x\mbox{>1/2} \end{matrix}\right. [/mm]

Würde mich auf eure Hilfe freuen.

Liebe Grüße
Milaa

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Mo 20.01.2014
Autor: DieAcht

Hallo,


Ich verstehe nicht genau um was es dir geht.
Falls bei der Grenzwertbildung der Fall [mm] "\frac{0}{0}" [/mm] auftritt,
kannst du es mit L'Hospital verarzten.

Das brauchst du aber (hier), so glaube ich zumindest, nicht.

Geht es dir um die Berechnung des folgenden Grenzwertes?

      [mm] \limes_{n\rightarrow\infty}\frac{x-\frac{1}{2}+\frac{1}{n}}{\frac{2}{n}} [/mm]

Es gilt:

      [mm] \frac{x-\frac{1}{2}+\frac{1}{n}}{\frac{2}{n}}=\frac{nx}{2}-\frac{n}{4}+\frac{1}{2} [/mm]

Für [mm] $x:=\frac{1}{2}$ [/mm] gilt:

      [mm] \frac{n*\frac{1}{2}}{2}-\frac{n}{4}+\frac{1}{2}=\frac{1}{2} [/mm]


Ich lasse die Frage mal auf teilweise beantwortet.
Vielleicht habe ich dich auch komplett missverstanden.


Gruß
DieAcht

Bezug
                
Bezug
Konvergenz: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:09 Mo 20.01.2014
Autor: Milaa

Hallo,

also meine Zufallsvariable [mm] X_n [/mm] ist stetig Gleichverteilt auf [1/2 -1/n, 1/2+1/n]
und die Zufallsvariable X = 1/2
Ich wollte nur zeigen das [mm] X_n [/mm] in Verteilung gegen X konvergiert (für n -> unendlich) und deswegen habe ich die Verteilungsfunktionen jeweils erst bestimmt und dann versucht den Grenzwert zu bestimmen.


Liebe Grüße
Milaa

Bezug
                        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:18 Mo 20.01.2014
Autor: DieAcht

Hallo,

Ist damit deine Frage geklärt?

Gruß
DieAcht

Bezug
                                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:26 Mo 20.01.2014
Autor: Milaa

Hallo,

leider nicht weil ich habe ja nicht gezeigt dass [mm] F_(X_n) [/mm] für n-> unendlich = [mm] F_X [/mm] ist. Dafür müsste ich doch sagen was $ [mm] \frac{x-\frac{1}{2}+\frac{1}{n}}{\frac{2}{n}}=\frac{nx}{2}-\frac{n}{4}+\frac{1}{2} [/mm] $ deren Grenzwert ist und in welchem Intervall.

Also erstmal ohne Betrachtung x:= 1/2.

Liebe Grüße
Milaa

Bezug
                                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:34 Mo 20.01.2014
Autor: Gonozal_IX

Hiho,


> leider nicht weil ich habe ja nicht gezeigt dass [mm]F_(X_n)[/mm] für n-> unendlich = [mm]F_X[/mm] ist.

Das wird es auch nicht werden.

> Dafür müsste ich doch sagen was [mm]\frac{x-\frac{1}{2}+\frac{1}{n}}{\frac{2}{n}}=\frac{nx}{2}-\frac{n}{4}+\frac{1}{2}[/mm] deren Grenzwert ist und in welchem Intervall.

> Also erstmal ohne Betrachtung x:= 1/2.

Das macht keinen Sinn. Schau dir das Intervall mal genau an. Was kommt denn da als Grenzwert raus? Welche Stelle ist also die einzige, die darin enthalten bleibt? Welchen Wert F da dann hat, wurde dir bereits vorgerechnet.

Gruß,
Gono.

Bezug
                                                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:37 Mo 20.01.2014
Autor: Milaa

Hallo,

ja ich weis schon was du meinst aber meine Aufgabenstellung lautet Zeige dass [mm] X_n [/mm] in Verteilung gegen X konvergiert. ? :S

Liebe Grüße
Milaa

Bezug
                                                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 00:04 Di 21.01.2014
Autor: Gonozal_IX

Hiho,

> ja ich weis schon was du meinst aber meine Aufgabenstellung lautet Zeige dass [mm]X_n[/mm] in Verteilung gegen X konvergiert. ?

ja, das stimmt ja auch.
Schau mal in die Definition, wann [mm] X_n [/mm] gegen X in Verteilung konvergiert.

Gruß,
Gono.

Bezug
                                                                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:14 Di 21.01.2014
Autor: Milaa

Hey,

meinst du etwa den Teil : [mm] \limes_{n\rightarrow\infty} F_(X_n) [/mm] = [mm] F_X [/mm] an alle Stellen x [mm] \in \IR [/mm] an denen F stetig ist. Und da F an der Stelle 1/2 unstetig ist konvergiert sie außer an der Stelle x= 1/2 in Verteilung gegen X.

Liebe Grüße
Milaa

Bezug
                                                                        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:28 Di 21.01.2014
Autor: Gonozal_IX

Hiho,

> meinst du etwa den Teil : [mm]\limes_{n\rightarrow\infty} F_(X_n)[/mm]
> = [mm]F_X[/mm] an alle Stellen x [mm]\in \IR[/mm] an denen F stetig ist. Und  da F an der Stelle 1/2 unstetig ist konvergiert sie außer an der Stelle x= 1/2 in Verteilung gegen X.

du wuselst hier Begrifflichkeiten durcheinander.

[mm] F_{X_n} [/mm] konvergiert an allen Stellen außer 1/2 gegen [mm] $F_X$. [/mm]
Da [mm] F_X [/mm] an 1/2 unstetig ist, interessiert die Stelle aber nicht, und [mm] X_n [/mm] konvergiert in Verteilung gegen X.

[mm] F_{X_n} [/mm] kann in Verteilung nirgendwohin konvergieren. "In Verteilung" ist immer eine Konvergenz von Zufallsvariablen, nicht von Verteilungsfunktionen.

Gruß,
Gono.


Bezug
                                                                                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:35 Di 21.01.2014
Autor: Milaa

Vielen Dank Gono habe es nun verstanden.

Liebe Grüße
Milaa

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de