Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] \pi [/mm] : [mm] \IN [/mm] --> [mm] \IN [/mm] eine bijektive Abbildung, [mm] (a_{n})_{n \in \IN} [/mm] eine Folge.
Zeige [mm] (a_{n})_{n \in \IN} [/mm] konvergent [mm] \gdw (a_{\pi (n)})_{n \in \IN} [/mm] |
Hallo, ich brauche nochmal eure Hilfe. Ich verstehe was Konvergenz und Bjiktiv und so bedeutet. Aber mit der Aufgabe komme ich nicht klar. kann mir hier wohl jemand helfen?Wäre echt nett. An dieser Aufgabe verbeiß ich mich
|
|
|
|
kann mir hier bitte noch jemand helfen?
|
|
|
|
|
Hi mahte-trottel,
> Sei [mm]\pi[/mm] : [mm]\IN[/mm] --> [mm]\IN[/mm] eine bijektive Abbildung, [mm](a_{n})_{n \in \IN}[/mm]
> eine Folge.
> Zeige [mm](a_{n})_{n \in \IN}[/mm] konvergent [mm]\gdw (a_{\pi (n)})_{n \in \IN}[/mm]
>
> Hallo, ich brauche nochmal eure Hilfe. Ich verstehe was
> Konvergenz und Bjiktiv und so bedeutet. Aber mit der
> Aufgabe komme ich nicht klar. kann mir hier wohl jemand
> helfen?Wäre echt nett. An dieser Aufgabe verbeiß ich mich
Sei [mm] $(a_{\pi(n)})_{n \in \IN}$ [/mm] konvergent. genau dann ist die folge ja auch beschränkt. Und das passiert genau dann, wenn die Menge der Folgenglieder beschränkt ist. Und nu laß mal die Inverse von [mm] $\pi$ [/mm] auf diese Menge los ...
Hoffe das hilft
zahlenspieler
|
|
|
|
|
hey danke...aber wie meinst du das mit der inversen?das versteh ich nicht...wie soll das denn gehen? ich hoffe du kannst mir das erklären
|
|
|
|
|
kann mir bitte noch jemand helfen? ich muss es nun morgen abgeben und versteh es einfach nicht. bitte bitte, ist echt dringend :-(
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:35 Mi 08.11.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|