www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:53 Mi 12.10.2005
Autor: Farnsy

Hallo,
mit welchem Verfahren kann ich die Konvergenz von
[mm] \wurzel{n} * (\wurzel{n+1} - \wurzel{n}) [/mm]
zeigen?


Ich bin da gerade irgendwie ideenlos... ich hätte gedacht, dass 0 die richtige Lösung ist, aber anscheinend ist es 0,5.
Für nen Denkanstoß wäre ich dankbar :)

        
Bezug
Konvergenz: Erweitern ...
Status: (Antwort) fertig Status 
Datum: 17:11 Mi 12.10.2005
Autor: Roadrunner

Hallo Farnsy!


Erweitere doch hier mal mit dem Term [mm] $\wurzel{n+1} [/mm] \ [mm] \red{+} [/mm] \ [mm] \wurzel{n}$ [/mm] (Stichwort: 3. binomische Formel) und klammere anschließend im Nenner [mm] $\wurzel{n}$ [/mm] aus ...


Der Grenzwert für $n [mm] \rightarrow \infty$ [/mm] lautet dann wirklich [mm] $\bruch{1}{2}$ [/mm] .


Gruß vom
Roadrunner


Bezug
                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Mi 12.10.2005
Autor: Farnsy

Danke :-)

Also haben wir [mm] \bruch{\wurzel{n}}{\wurzel{n}(1+0+1)} [/mm]
wenn man n gegen unentlich gehen lässt. dann einfach die Wurzel kürzen. ok

Aber wie erkennt man, dass es so geht?
Ist das einfach Intuition? Oder gibt es da ein Merkmal auf das man achten kann.

Grüße
Farnsy

Bezug
                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Mi 12.10.2005
Autor: SEcki


> Aber wie erkennt man, dass es so geht?
>  Ist das einfach Intuition?

Und Übung, Praxis, inspiration, oder: so einen Typus schonmal gesehen haben.

> Oder gibt es da ein Merkmal auf
> das man achten kann.

Wenn man mal so eine Aufgabe gemacht hat, "sieht" man das bei so einer, das es klappen könnte - wie beim Integrieren, ob man Substituitonsformel und/oder partielle Integration anwendet.

SEcki

Bezug
                        
Bezug
Konvergenz: Genauer!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:53 Mi 12.10.2005
Autor: Roadrunner

Hallo Farnsy!


Das hast Du aber etwas ungenau aufgeschrieben:

[mm] $\wurzel{n}*\left( \ \wurzel{n+1} - \wurzel{n} \ \right) [/mm] \ = \ [mm] \bruch{1}{\wurzel{1+\bruch{1}{n}} + 1} \longrightarrow [/mm] \ [mm] \bruch{1}{\wurzel{1+0}+1} [/mm] \ = \ [mm] \bruch{1}{1+1} [/mm] \ = \ [mm] \bruch{1}{2}$ [/mm]


Noch mal zur Methode ...

Diese Summen oder Differenzen von Wurzelausdrücken lassen sich schon des öfteren mit der 3. binomischen Formel "knacken". Dnn muss man halt den Term entsprechend erweitern ...


Sonst wie SEcki bereits sagte: Übung, Übung, Übung!


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de