www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Konvergenz/Divergenz Folgen
Konvergenz/Divergenz Folgen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz/Divergenz Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 So 21.04.2013
Autor: Prot

Aufgabe 1
Untersuchen Sie die Folge [mm] $(a_n)_{n\in\IN}=(\frac{3n^4+3n-9}{6n^4-7n^2-n}\cdot cos(\frac{1}{2^n}))_{n\in \IN}$ [/mm] auf Konvergenz.

Aufgabe 2
Zeigen Sie, dass die Folge [mm] $(b_n)_{n\in\IN}=(sin(n\frac{\pi}{2}))_{n\in \IN}$ [/mm] divergiert.
Hat [mm] $(b_n)_{n\in\IN}$ [/mm] eine konvergente Teilfolge? Geben Sie ggf. eine solche Teilfolge an. Gegen welchen Grenzwert konvergiert sie?

Ich möchte wissen ob die Überlegungen die ich zu diesen Aufgaben angestellt habe richtig sind.

Zu Aufgabe 1:

Die Folge [mm] $(a_n)_{n\in\IN}$ [/mm] besteht aus zwei Teilfolgen. [mm] $\frac{3n^4+3n-9}{6n^4-7n^2-n}$ [/mm] ist die erste. Diese Teilfolge konvergiert gegen [mm] $\frac{1}{2}$. [/mm] Das lässt sich enteweder aus den Leitkoeffizienten ablesen oder durch ausklammern von [mm] $n^4$ [/mm] berechnen.
Die zweite Teilfolge [mm] $cos(\frac{1}{2^n})$ [/mm] ist beschränkt aber nicht konvergent, da sie immer Werte zwischen $1$ und $-1$ annimmt.

Was passiert jetzt aber genau wenn ich eine konvergente Folge mit einer beschränkten Folge multipliziere?

Zu Aufgabe 2:

Kann ich hier als Argument einfach sagen, dass auch $sin(x)$ nur Werte zwischen $1$ und $-1$ annehmen kann und somit zwar beschränkt aber nicht konvergent ist?
Außerdem ist die einzige Teilfolge von [mm] $(b_n)_{n\in\IN}$, $(n\frac{\pi}{2})$. [/mm] Diese Teilfolge ist nicht konvergent da sie mit steigendem $n$ immer weiter steigen wird.

Sind meine Ansätze richtig? Wenn ja sind meine Argumente auch schlüssig?

Vielen Dank im Voraus.

Prot

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz/Divergenz Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:54 So 21.04.2013
Autor: Thomas_Aut


> Untersuchen Sie die Folge
> [mm](a_n)_{n\in\IN}=(\frac{3n^4+3n-9}{6n^4-7n^2-n}\cdot cos(\frac{1}{2^n}))_{n\in \IN}[/mm]
> auf Konvergenz.
>  Zeigen Sie, dass die Folge
> [mm](b_n)_{n\in\IN}=(sin(n\frac{\pi}{2}))_{n\in \IN}[/mm]
> divergiert.
> Hat [mm](b_n)_{n\in\IN}[/mm] eine konvergente Teilfolge? Geben Sie
> ggf. eine solche Teilfolge an. Gegen welchen Grenzwert
> konvergiert sie?
>  Ich möchte wissen ob die Überlegungen die ich zu diesen
> Aufgaben angestellt habe richtig sind.
>  
> Zu Aufgabe 1:
>  
> Die Folge [mm](a_n)_{n\in\IN}[/mm] besteht aus zwei Teilfolgen.
> [mm]\frac{3n^4+3n-9}{6n^4-7n^2-n}[/mm] ist die erste. Diese
> Teilfolge konvergiert gegen [mm]\frac{1}{2}[/mm]. Das lässt sich
> enteweder aus den Leitkoeffizienten ablesen oder durch
> ausklammern von [mm]n^4[/mm] berechnen.
> Die zweite Teilfolge [mm]cos(\frac{1}{2^n})[/mm] ist beschränkt
> aber nicht konvergent, da sie immer Werte zwischen [mm]1[/mm] und [mm]-1[/mm]
> annimmt.
>
> Was passiert jetzt aber genau wenn ich eine konvergente
> Folge mit einer beschränkten Folge multipliziere?

Hallo,

Also ja dein erster Ausdruck konvergiert für n [mm] \to \infty [/mm] gegen [mm] \frac{1}{2} [/mm] , aber überlege doch mal was im Cosinus steht ... eine gegen 0 konvergente Folge , insofern ergibt hier der Cosinus = 1. und somit ist der Grenzwert genau [mm] \frac{1}{2} [/mm]

Ganz generell ist es abhängig was du mit einer beschränkten Folge multiplizierst - ist der AUsdruck bestimmt, unbestimmt usw.

Lg Thomas

>  
> Zu Aufgabe 2:
>  
> Kann ich hier als Argument einfach sagen, dass auch [mm]sin(x)[/mm]
> nur Werte zwischen [mm]1[/mm] und [mm]-1[/mm] annehmen kann und somit zwar
> beschränkt aber nicht konvergent ist?
>  Außerdem ist die einzige Teilfolge von [mm](b_n)_{n\in\IN}[/mm],
> [mm](n\frac{\pi}{2})[/mm]. Diese Teilfolge ist nicht konvergent da
> sie mit steigendem [mm]n[/mm] immer weiter steigen wird.
>  
> Sind meine Ansätze richtig? Wenn ja sind meine Argumente
> auch schlüssig?
>  
> Vielen Dank im Voraus.
>  
> Prot
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
Konvergenz/Divergenz Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 So 21.04.2013
Autor: reverend

Hallo Prot,

da stimmt noch etwas nicht.

> Untersuchen Sie die Folge
> [mm](a_n)_{n\in\IN}=(\frac{3n^4+3n-9}{6n^4-7n^2-n}\cdot cos(\frac{1}{2^n}))_{n\in \IN}[/mm]
> auf Konvergenz.
> Zeigen Sie, dass die Folge
> [mm](b_n)_%7Bn%5Cin%5CIN%7D%3D(sin(n%5Cfrac%7B%5Cpi%7D%7B2%7D))_%7Bn%5Cin%20%5CIN%7D[/mm]
> divergiert.
> Hat [mm](b_n)_{n\in\IN}[/mm] eine konvergente Teilfolge? Geben Sie
> ggf. eine solche Teilfolge an. Gegen welchen Grenzwert
> konvergiert sie?

>

> Ich möchte wissen ob die Überlegungen die ich zu diesen
> Aufgaben angestellt habe richtig sind.

>

> Zu Aufgabe 1:

>

> Die Folge [mm](a_n)_{n\in\IN}[/mm] besteht aus zwei Teilfolgen.

Unter Teilfolgen versteht man Folgen, die aus einer Auswahl von Gliedern einer andern Folge bestehen. Hier aber zerlegst Du das Bildungsgesetz der Folge in zwei Faktoren, was natürlich möglich ist. Man würde nur nicht "Teilfolge" sagen. Du könntest formulieren: ich stelle die Folge [mm] a_n [/mm] als Produkt zweier anderer Folgen dar.

> [mm]\frac{3n^4+3n-9}{6n^4-7n^2-n}[/mm] ist die erste. Diese
> Teilfolge konvergiert gegen [mm]\frac{1}{2}[/mm]. Das lässt sich
> enteweder aus den Leitkoeffizienten ablesen oder durch
> ausklammern von [mm]n^4[/mm] berechnen.

Ja, richtig.

> Die zweite Teilfolge [mm]cos(\frac{1}{2^n})[/mm] ist beschränkt
> aber nicht konvergent, da sie immer Werte zwischen [mm]1[/mm] und [mm]-1[/mm]
> annimmt.

Das stimmt hier nicht. Der Grenzwert für [mm] n\to\infty [/mm] ist doch ganz klar 1.

> Was passiert jetzt aber genau wenn ich eine konvergente
> Folge mit einer beschränkten Folge multipliziere?

Dann erhältst Du eine konvergente Folge, aber die Frage stellt sich hier nicht!

> Zu Aufgabe 2:

>

> Kann ich hier als Argument einfach sagen, dass auch [mm]sin(x)[/mm]
> nur Werte zwischen [mm]1[/mm] und [mm]-1[/mm] annehmen kann und somit zwar
> beschränkt aber nicht konvergent ist?

Na, das geht hier aber deutlich genauer. Bestimme doch mal die ersten 247 Folgenglieder.

> Außerdem ist die einzige Teilfolge von [mm](b_n)_{n\in\IN}[/mm],
> [mm](n%5Cfrac%7B%5Cpi%7D%7B2%7D)[/mm].

Auch das ist keine Teilfolge!

> Diese Teilfolge ist nicht konvergent da
> sie mit steigendem [mm]n[/mm] immer weiter steigen wird.

[mm] b_n [/mm] hat zwei offensichtliche Teilfolgen. Sie sollten Dir spätestens beim 4. Folgenglied auffallen.

> Sind meine Ansätze richtig? Wenn ja sind meine Argumente
> auch schlüssig?

Nein. Schau vor allem nochmal nach, was eine Teilfolge ist.

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de