www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz Funktionenfolge
Konvergenz Funktionenfolge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Funktionenfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 Mi 30.04.2014
Autor: Jochen90

Aufgabe
Seii f(x) [mm] 1/n*e^{-n^2*x^2} [/mm] eine Funktionfolge

Zeigen Sie, dass die erste Ableitung von f(x) auf dem Intervall [0,1] punktweise, aber nicht gleichmäßig ist

Hallo, brauche mal wieder Hilfe

f'(x)= [mm] -2nxe^{-n^2*x^2} [/mm]

[mm] f'(x)=-2nx/e^{n^2*x^2} [/mm]
[mm] \limes_{n\rightarrow\infty} [/mm]    = 0  


Meine Frage lautet wäre hiermit die punktweise Konvergenz gezeigt?

Wie zeige ich das mit der gleichmäßige Konvergenz?
[mm] \limes_{n\rightarrow\infty} [/mm] sup |fn(x)-f(x)=0



        
Bezug
Konvergenz Funktionenfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Mi 30.04.2014
Autor: fred97


> Seii f(x) [mm]1/n*e^{-n^2*x^2}[/mm] eine Funktionfolge

Du meinst sicher [mm]f_n(x)=1/n*e^{-n^2*x^2}[/mm]

>  
> Zeigen Sie, dass die erste Ableitung von f(x)

.....  Von [mm] f_n(x)... [/mm]

>  auf dem
> Intervall [0,1] punktweise, aber nicht gleichmäßig ist

.. ist ?   oder konvergiert ?


>  Hallo, brauche mal wieder Hilfe
>  
> f'(x)= [mm]-2nxe^{-n^2*x^2}[/mm]

[mm]f_n'(x)=-2nxe^{-n^2*x^2}[/mm]

>  
> [mm]f'(x)=-2nx/e^{n^2*x^2}[/mm]
>  [mm]\limes_{n\rightarrow\infty}[/mm]    = 0  

Wieder schlampig geschrieben !

Ja, es ist [mm] \limes_{n\rightarrow\infty}f_n'(x)=0 [/mm]  für jedes x [mm] \in [/mm] [0,1]

Etwas an Begründungen solltest Du noch spendieren !

>
>
> Meine Frage lautet wäre hiermit die punktweise Konvergenz
> gezeigt?

Wie gesagt: Begründungen !

>  
> Wie zeige ich das mit der gleichmäßige Konvergenz?
>  [mm]\limes_{n\rightarrow\infty}[/mm] sup |fn(x)-f(x)=0
>  
>  

Zunächst ist $0 [mm] \le f_n(x) \le \bruch{1}{n}$ [/mm]  für alle x [mm] \in [/mm] [0,1].

Damit konvergiert [mm] (f_n) [/mm] auf [0,1]  gleichmäßig gegen 0.

Annahme: [mm] (f_n') [/mm]  konvergiert auf [0,1] gleichmäßig gegen 0.

Dann gäbe es zu [mm] \varepsilon=\bruch{1}{e} [/mm] ein N [mm] \in \IN [/mm] mit:

    [mm] |f_n'(x)|<\bruch{1}{e} [/mm]   für alle x [mm] \in [/mm] [0,1]  und alle n>N.

Nun finde eine Folge [mm] (a_n) [/mm] in [0,1] mit

   [mm] |f_n'(a_n)|=\bruch{2}{e} [/mm] .

Damit hast Du einen Widerspruch.

FRED

Bezug
                
Bezug
Konvergenz Funktionenfolge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:13 Mi 30.04.2014
Autor: Jochen90

Vielen Dank für deine Antwort Fred,

tut mir leid wegen den Schreibfehlern.

Ich verstehe nicht wie man auf [mm] \varepsilon [/mm] =1/e .
Kann es sein dass es der Grenzwert von fn'(x) ist oder kann es sein da fn(x) =1/n < [mm] \varepsilon [/mm] ??





Bezug
                
Bezug
Konvergenz Funktionenfolge: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:53 Do 01.05.2014
Autor: Jochen90

Wie komm ich zu dieser Folge ? Muss ich da mit Monotonie arbeiten?

Bezug
                        
Bezug
Konvergenz Funktionenfolge: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Sa 03.05.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de