www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Konvergenz & Gleichungssystem
Konvergenz & Gleichungssystem < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz & Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:59 Sa 06.07.2013
Autor: Kappa

Aufgabe
Seien [mm] A,M\in \mathbb{R}^{n\times n} [/mm] symmetrische und positiv definite Matrizen, deren Multiplikation kommutiert und sei [mm] b\in \mathbb{R}^n. [/mm] Um das Gleichungssystem Ax=b zu lösen, betrachten wir folgendes Verfahren:
[mm] x_{n+1}=(I-\alpha M^{-1}A)x_n+\alpha M^{-1}b,\ n\in \mathbb{N}_0 [/mm]
mit dem Startvektor [mm] x_0\in \mathbb{R}^n. [/mm] Sei [mm] \lambda_{max} [/mm] der betraglich größte Eigenwert von [mm] M^{-1}A [/mm] und sei [mm] \alpha \in (0,\bruch{2}{| \lambda_{max} |}). [/mm]
Zeigen Sie, dass
(i) [mm] M^{-1}A [/mm] symmetrisch und positiv definit ist.
(ii) das Verfahren für jeden Startvektor [mm] x_0\in \mathbb{R}^n [/mm] konvergiert.
(iii) der Grenzwert des Verfahrens das Gleichungssystem Ax=b löst.

Hinweis: Das Produkt zweier positiv definiten Matrizen, deren Multiplikation kommutiert, ist wieder positiv definit.

Hallo,

ich brauche ganz dringend Hilfe bei der Aufgabe.
Von Teil (i) habe ich schon gezeigt, dass das positiv definit ist. Bei der Symmetrie habe ich ein paar Probleme. Das Inverse einer symmetrischen Matrix ist ja wieder symmetrisch. Hier gilt ja AM=MA. Gilt dann auch [mm] AM^{-1}=M^{-1}A?? [/mm] Wenn das gelten würde, dann könnte ich zeigen, dass das Produkt wieder symmetrisch ist. Wenn das nicht gilt, wie kann ich dann zeigen, dass das Produkt symmetrisch ist?
Bei (ii) und (iii) weiß ich aber überhaupt nicht, wie ich vorgehen soll.
Ich brauche unbedingt einen Ansatz oder Hinweis.
Es ist wirklich wichtig. Ich muss die Aufgabe perfekt vorrechnen, weil ich sonst nicht zur Klausur zugelassen bin.

Bin für jede Hilfe dankbar.
Grüße Kappa



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz & Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 08:32 So 07.07.2013
Autor: fred97

1. Multipliziere die Gl.

     AM=MA

von links mit [mm] M^{-1} [/mm] und die entstandene Gl. von rechts mit [mm] M^{-1}. [/mm]


2. Ist B eine symmetrische Matrix, so hat die Menge

     [mm] \{ |\lambda|: \lambda \quad ist \quad Eigenwert \quad von \quad B \} [/mm]

ein Maximum [mm] m_0. [/mm]

Es gilt:

     [mm] m_0=||B||, [/mm]

wobei ||*|| die zu euklidischen Norm auf [mm] \IR^n [/mm] gehörende Operatorennorm ist.

3. Setze  [mm] B:=I-\alpha M^{-1}A [/mm] und zeige

     ||B||<1.

4. Teil (ii) Deiner Aufgabe folgt aus 3. und dem Fixpunktsatz von Banach.

5. Ist x der Grenzwert der Folge [mm] (x_n), [/mm] so gilt

     [mm] x=(I-\alpha M^{-1}A)x+\alpha M^{-1}b. [/mm]

Zeige, dass daraus Ax=b folgt.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de