www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Konvergenz Matrizen
Konvergenz Matrizen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Matrizen: Idee
Status: (Frage) beantwortet Status 
Datum: 18:59 Di 06.11.2012
Autor: kalifat

Aufgabe
Wenn [mm] A_j [/mm] -> A und [mm] B_j [/mm] -> B dann [mm] A_j*B_j [/mm] -> AB

Es handelt sich um die Supremumsnorm.

Ich habe es mir so überlegt: [mm] A_j [/mm] -> A , d.h [mm] \parallel A-A_j\parallel<\epsilon_1 [/mm]

[mm] B_j [/mm] -> B, d.h [mm] \parallel B-B_j\parallel<\epsilon_2 [/mm]

=> [mm] \parallel AB-A_j*B_j\parallel<\parallel A-A_j\parallel\parallel B-B_j\parallel<\epsilon [/mm]

wegen [mm] \parallel AB\parallel<\parallel A\parallel\parallel B\parallel [/mm]

Stimmt das so?

        
Bezug
Konvergenz Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 Di 06.11.2012
Autor: fred97


> Wenn [mm]A_j[/mm] -> A und [mm]B_j[/mm] -> B dann [mm]A_j*B_j[/mm] -> AB
>  Es handelt sich um die Supremumsnorm.
>  
> Ich habe es mir so überlegt: [mm]A_j[/mm] -> A , d.h [mm]\parallel A-A_j\parallel<\epsilon_1[/mm]
>  
> [mm]B_j[/mm] -> B, d.h [mm]\parallel B-B_j\parallel<\epsilon_2[/mm]
>  
> => [mm]\parallel AB-A_j*B_j\parallel<\parallel A-A_j\parallel\parallel B-B_j\parallel<\epsilon[/mm]
>  
> wegen [mm]\parallel AB\parallel<\parallel A\parallel\parallel B\parallel[/mm]
>  
> Stimmt das so?

Nein. Ist denn [mm] AB-A_jB_j [/mm] = [mm] (A-A_j)(B-B_j) [/mm] ? Im allgemeinen nicht !


Der korrekte Beweis geht (fast) wörtlich , wie für Zahlenfolgen.

FRED


Bezug
                
Bezug
Konvergenz Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 Di 06.11.2012
Autor: kalifat

Stimmt, jetzt habe ich nur ein kleines Problem, was mache ich mit folgendem Ausdruck:

[mm] \parallel A_j B-AB\parallel. [/mm] Da kann ich doch B nicht ohne weiteres herausheben, da ich ja nicht weiß ob A und B kommutieren.

Bezug
                        
Bezug
Konvergenz Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Di 06.11.2012
Autor: Helbig

Hallo Kalifat,

> Stimmt, jetzt habe ich nur ein kleines Problem, was mache
> ich mit folgendem Ausdruck:
>  
> [mm]\parallel A_j B-AB\parallel.[/mm] Da kann ich doch B nicht ohne
> weiteres herausheben, da ich ja nicht weiß ob A und B
> kommutieren.

Das brauchen die auch nicht zum Herausheben. Quadratische Matrizen bilden einen Ring, d. h. es gelten beide Distributivgesetze und eines begründet [mm] $A_j*B [/mm] - A*B =( [mm] A_j-A)*B\;.$ [/mm]

Gruß,
Wolfgang


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de