www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz Potenzreihen
Konvergenz Potenzreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:57 Mo 19.11.2012
Autor: a93303

Aufgabe
Prüfen Sie nach für welche x [mm] \in \IR [/mm] der folgenden Potenzreihen konvergieren. Führen Sie dazu auch eine Randbetrachtung durch.
(a) [mm] \summe_{k=0}^{\infty} \bruch{(x)^{k}}{9^{k}} [/mm]
(b) [mm] \summe_{k=0}^{\infty} \bruch{(x-5)^{2k}}{4^{k+1}} [/mm]

Guten Morgen,

ich habe die oben genannte Aufgabe zu lösen und keine Idee wie ich vorgehen muss.
Vor allem verwirrt mich das "x".
Ist "x" in diesem Fall "n"?

Würde mich freuen, wenn wir jemand helfen könnte :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:38 Mo 19.11.2012
Autor: fred97


> Prüfen Sie nach für welche x [mm]\in \IR[/mm] der folgenden
> Potenzreihen konvergieren. Führen Sie dazu auch eine
> Randbetrachtung durch.
>  (a) [mm]\summe_{k=0}^{\infty} \bruch{(x)^{k}}{9^{k}}[/mm]
>  (b)
> [mm]\summe_{k=0}^{\infty} \bruch{(x-5)^{2k}}{4^{k+1}}[/mm]
>  Guten
> Morgen,
>  
> ich habe die oben genannte Aufgabe zu lösen und keine Idee
> wie ich vorgehen muss.
>  Vor allem verwirrt mich das "x".
>  Ist "x" in diesem Fall "n"?

Nein. x ist eine Variable. Für jedes x [mm] \in \IR [/mm] bekommst Du eine Reihe.

Die Frage ist: für welche x konvergiert die jeweilige Reihe ?

beispiel:

$ [mm] \summe_{k=0}^{\infty} \bruch{(x)^{k}}{9^{k}} [/mm] $

Diese Reihe kann man auch so schreiben:  $ [mm] \summe_{k=0}^{\infty} (\bruch{x}{9})^k [/mm] $


Das ist eine geometrische Reihe , als von der Form  [mm] \summe_{k=0}^{\infty}q^k [/mm]

Hier ist [mm] q=\bruch{x}{9} [/mm]

Was ist Dir bekannt über das Konvergenzverhalten von [mm] \summe_{k=0}^{\infty}q^k [/mm] ?

FRED

>  
> Würde mich freuen, wenn wir jemand helfen könnte :)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Konvergenz Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:47 Mo 19.11.2012
Autor: a93303

Danke schonmal.

Heißt das, ich muss nun mit vollständiger Induktion zeigen, dass für [mm] x\not=1 [/mm]
[mm] \summe_{k=0}^{n}x^{k} [/mm] = [mm] \bruch{1-x^{n+1}}{1-x} [/mm] gilt?


Bezug
                        
Bezug
Konvergenz Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:53 Mo 19.11.2012
Autor: M.Rex


> Danke schonmal.
>  
> Heißt das, ich muss nun mit vollständiger Induktion
> zeigen, dass für [mm]x\not=1[/mm]
>  [mm]\summe_{k=0}^{n}x^{k}[/mm] = [mm]\bruch{1-x^{n+1}}{1-x}[/mm] gilt?
>  

Diesen Satz darfst du benutzen, und musst ihn auch nicht beweisen. Er hat aber eine Voraussetzung an die Basis x. Diese musst du für deine Aufgabe "Abklopfen", damit bekommst du dann eine Einschränkung.

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de