www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz einer Folge
Konvergenz einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Folge: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:37 Mo 06.11.2006
Autor: uxo

Aufgabe
[mm] a_n [/mm] = [mm] \bruch{(n+1)(n+3)}{n+1} [/mm] - [mm] \bruch{n^3}{n^2-1} [/mm]

Hallo liebe Mitglieder!

Als zweites und letztes (versprochen!) soll ich nun obenstehende Folge auf Konvergenz und Monotonie untersuchen, und den Häufungspunkt angeben.
Dazu bin ich wie folgt vorgegangen:

Grenzwertberechnung:

[mm] a_n [/mm] = [mm] \bruch{(n+1)(n+3)}{n+1} [/mm] - [mm] \bruch{n^3}{n^2-1} [/mm]

[mm] a_n [/mm] = [mm] \bruch{(n^2+2n-3)(n^2-1)-n^3(n+1)}{(n+1)(n^2-1)} [/mm]

[mm] a_n [/mm] = [mm] \bruch{n^4-n^2+2n^3-2n-3n^2+3-n^4-n^3}{(n+1)(n^2-1)} [/mm]

[mm] a_n [/mm] = [mm] \bruch{n^3-4n^2-2n+3}{n^3+n^2-n-1} [/mm]

[mm] a_n [/mm] = [mm] \bruch{1-\bruch{4}{n} - \bruch{2}{n^2} + \bruch{3}{n^3}}{1 + \bruch{1}{n} - \bruch{1}{n^2} - \bruch{1}{n^3}} [/mm]

Damit erhalte ich als Grenzwert:

[mm] \limes_{n\rightarrow\infty} a_n [/mm] = 1

Die Monotonie zeige ich, indem ich annehme, daß [mm] a_n \le a_{n+1} [/mm] :

Zuerst partialzerlege ich den Bruch [mm] a_n [/mm] = [mm] \bruch{n^3-4n^2-2n+3}{n^3+n^2-n-1} [/mm] und erhalte 1 - [mm] \bruch{5n-4}{n^2-1} [/mm]

1 - [mm] \bruch{5n-4}{n^2-1} \ge [/mm] 1 - [mm] \bruch{5n+1}{n^2+2n} [/mm]

[mm] (5n-4)(n^2+2n) \ge (5n+1)(n^2-1) [/mm]
[mm] 5n^3+10n^2-4n^2-8n \ge 5n^3-5n+n^2-1 [/mm]
[mm] 6n^2-8n \ge n^2-5n-1 [/mm]
[mm] 5n^2-3n \ge -1 [/mm]

Wenn ich diese Quadratische Ungleichung jetzt löse, erhalte ich für [mm] n_1 [/mm] ~ 6 und für [mm] n_2 [/mm] ~ -5.
Aber was sagt mir das jetz bez. der Monotonie?

Nicht viel besser ergeht es mir beim Versuch, die Konvergenz der Folge zu beweisen:

| [mm] a_n [/mm] - a | < [mm] \epsilon [/mm]

| 1 - [mm] \bruch{5n-4}{n^2-1} [/mm] - 1 | < [mm] \epsilon [/mm]

| - [mm] \bruch{5n-4}{n^2-1} [/mm] | < [mm] \epsilon [/mm]

Für [mm] n > 1 [/mm] :

[mm] \bruch{5n-4}{n^2-1} < \epsilon [/mm]

[mm] \bruch{5-\bruch{4}{n}}{n-\bruch{1}{n}} < \epsilon [/mm]

[mm] 5 < \epsilon(n-\bruch{1}{n})+\bruch{4}{n} [/mm]

[mm] \bruch{5}{\epsilon} < n-\bruch{1}{n}+\bruch{4}{\epsilon n} [/mm]

[mm] \bruch{5}{\epsilon} < \bruch{1}{n}(n^2-1+\bruch{4}{\epsilon} [/mm]

Hier komme ich nicht mehr weiter.
Würde mich sehr über Eure Hilfe freuen,

liebe Grüße,
Thomas.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz einer Folge: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:16 Mo 06.11.2006
Autor: luis52

Hallo uxo,

warum kuerzt du nicht beim ersten Summand $(n+1)$ ?
Wenn ich mich nicht irre, erhaelt man so [mm] $a_n=(3n^2-n-3)/(n^2-1)$. [/mm]


hth


Bezug
        
Bezug
Konvergenz einer Folge: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Do 09.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de