www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Konvergenz einer Folge
Konvergenz einer Folge < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Folge: Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 22:52 Mi 24.11.2004
Autor: Tyvan

Hallo Leute,

ich habe bisher immer Probleme gehabt eine "einfache" gegebene Folge auf Konvergenz zu untersuchen. Vor allem bei rekursive Folgen hatte ich immer Probleme. Ich kenne den Ansatz noch aber hänge trotzdem daran.

Also erst mal eine nicht-rekursive Folge:

Die Konvergenz soll untersucht werden:

(1)  [mm] (a_{n})_{n\in\IN} [/mm] mit [mm] a_{n} [/mm] = [mm] \bruch{n^{k}}{2^{n}} [/mm]

Jetzt anhand vollständiger Induktion zeigen:

(2) [mm] n^{2} \le 2^{n} [/mm]

Und jetzt mit einer rekursiven Folge die Konvergenz und evtl. Grenzwert zeigen:

(3) [mm] a_{n+1} [/mm] = [mm] 2a_{n} [/mm] - [mm] \bruch{a_{n}^{2}}{4} [/mm]

--------------------------------------------------------------------------------

Zu (1): Reicht es wenn ich zum Nenner etwas finde, so das ich eine Ungleichung aufstellen kann, um dann am Ende eine Schranke für den Bruch von [mm] a_{n} [/mm] aus (1) zu haben? Eine Schranke wäre ja z.B. etwas bekanntes. Aus einer anderen Aufgabe weiss ich noch das ich dann [mm] \bruch{1}{n}, [/mm] also die harmonische Reihe gefunden hatte und diese als Schranke benutzen durfte. Aber das ging nur weil ich im Zähler eine 1 hatte. Hier bei (1) ist das ja anders. Welchen Weg kann ich da gehen?

Zu (2): Bei (2) gilt doch auch das gleiche oder? Etwas finden um eine Ungleichung zu stellen so das die obige Ungleichung aus (2) "trivialer" wird. Daher verstehe ich nicht was genau daran eine vollständige Induktion sein soll.

Zu (3): Auch hier müsste ich eine Ungleichung in der Form: [mm] a_{n} \le a_{n+1} [/mm] und [mm] a_{n+1} [/mm] - [mm] a_{n} \le0 [/mm] rauskriegen oder? Ich krieg das nie hin, oder genauer gesagt weiss ich nicht wann das als "gezeigt" gewertet werden kann.

Ihr müsst mir keine Lösung hinmachen, wenn mir mal einer einen guten Ansatz geben könnte so das ich das selbst machen könnte, wäre ich dankbar. :-)

Und überhaupt, stimmt das was ich bezüglich zu den 3 Aufgaben geschrieben habe?

Danke im voraus

        
Bezug
Konvergenz einer Folge: Ansätze
Status: (Antwort) fertig Status 
Datum: 08:35 Do 25.11.2004
Autor: e.kandrai

zu 1) Also ne vernünftige Abschätzung fällt mir dabei nicht ein; du redest von der harmonischen Reihe: vorsicht! Hier geht's nicht um ne Reihe, sondern um ne Folge!
Versuch mal rauszufinden, ob Nenner oder Zähler schneller gegen [mm]\infty[/mm] geht. Und ich nehme an, das k ist nicht beliebig.
Tip: schon mal was von der Regel von l'Hôpital gehört? Damit kannst du zeigen, dass der Nenner schneller gegen [mm]\infty[/mm] geht, als der Zähler.

zu 2) Wenn schon dasteht, dass eine Vollst. Ind. gewünscht ist, dann würd ich sie auch durchziehen. Also dann mal los mit Ind.anfang, Ind.voraussetzung und Ind.schluß. Wir helfen schon weiter, wenn's irgendwo klemmt.

zu 3) Ist hier kein Startwert gegeben? Also bei rekursiven Folgen funktioniert manchmal folgender Trick: man behauptet, es existiert ein Grenzwert. Und wenn, dann nennen wir ihn a: [mm]\limes_{n\rightarrow\infty}{a_n}=a[/mm]
Und jetzt der Trick: wir betrachten den Fall "[mm]n=\infty[/mm]", d.h. sowohl für [mm]a_{n+1}[/mm], als auch für [mm]a_n[/mm] setzen wir das a ein, und lösen die Gleichung [mm]\to[/mm] bestimmen alle möglichen Kandidaten für einen Grenzwert dieser rekursiven Folge. Ich habe 2 mögliche Grenzwerte erhalten. Wenn man einen Startwert gegeben hat, dann kann man danach evtl. einen (oder beide) dieser Grenzwerte ausschließen. Wie gesagt: mit diesem Trick erhält man Kandidaten für den Grenzwert.

So, nu mal viel Spaß beim Rumprobieren!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de