www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Konvergenz einer Mehrfachsumme
Konvergenz einer Mehrfachsumme < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Mehrfachsumme: Frage
Status: (Frage) beantwortet Status 
Datum: 16:01 Mi 24.11.2004
Autor: Nixraffer

Hallo!
Habe ein Problem, daß ich nicht lösen kann!
Ich bin Student der technischen Akustik und habe hier eine Mehrfachsumme, die ich auf Konvergenz untersuchen muß. Dazu möchte ich sie gerne in ein Integral umwandeln. (Muß ich das überhaupt?)
Um Euch nicht mit der gesamten Formel zu erschlagen, verallgemeinere ich sie:

[mm] \summe_{z=0}^{ \infty} \summe_{y=0}^{ \infty} \summe_{x=0}^{ \infty} \bruch{cos(xk_{1})cos(yk_{2})cos(zk_{3})cos(xk_{4})cos(yk_{5})cos(zk_{6})}{k_{7}x^2+k_{8}y^2+k_{9}z^2-k_{10}} [/mm]


Wer hat eine Idee?
(Sollte jemand einen Tipp haben: Meine Mathekenntnisse sind leider nicht mehr "taufrisch", insofern bitte nicht zu kompliriert erklären. Danke!)
Bin wirklich dankbar für jeden Hinweis!

Gruß,
Nixraffer



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz einer Mehrfachsumme: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Mi 24.11.2004
Autor: Wurzelpi

Hallo!

Ich glaube, dass sieht schlimmer aus, als es in Wirklichkeit ist.
Ausser ich übersehe auf die Schnelle irgendwas.

Meine Behauptung: Die Reihe ist absolut konvergent.
Begründung: Nimm [mm] 1/k^2 [/mm] als Majorante!

Nun etwas ausführlicher:
SChau Dir doch mal den Zähler an: Produkt aus cos.
Das heisst, diesen kann ich immer gegen 1 abschätzen, da |cos(x)|<= 1 für alle x.

So, nun zum Nenner:

[mm] k_{7}x^2+k_{8}y^2+k_{9}z^2-k_{10} [/mm]
Es werden also jeweils positive Werte aufaddiert.
Ich mache als den gesamten Bruch grösser, wenn ich positive Summanden im Nenner weglasse ("Man teilt durch weniger").
Somit kann ich den gesamten Nenner gegen  [mm] k_{7}x^2 [/mm] abschätzen.
Das sieht dann sehr nach dem Majorantenkriterium aus.
Also ist die Reihe abs. konvergent mit dem Majorantekriterium.

Ich hoffe, Du kommst damit klar.
Ansonsten melde Dich wieder!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de