www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz einer Reihe
Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:49 So 02.12.2007
Autor: schnuri

Aufgabe
Sie haben gezeigt, dass $ j! [mm] \ge 4^j [/mm] \ [mm] \forall [/mm] j [mm] \in \IN, [/mm] j [mm] \ge [/mm] 9 $. Zeigen Sie nun dass die Reihe $ [mm] \sum_{k=0}^{\infty} \frac{2^k}{k!} [/mm] $ konvergiert

Hi all,

ich habe Schwierigkeiten mit dieser Aufgabe. Ich würde so vorgehen:

Die Reihe in zwei Teilsummen teilen (da ich weiss, dass ab k>=9 der Nenner >= Zähler):

$ [mm] \sum_{k=0}^{\infty} \frac{2^k}{k!} [/mm] = [mm] \sum_{k=0}^{8} \frac{2^k}{k!} [/mm] + [mm] \sum_{k=9}^{\infty} \frac{2^k}{k!} [/mm] $

Für die linke Teilsumme müsste ich doch nur zeigen, dass diese $ < [mm] \infty [/mm] $ ist? Ich sehe das es so ist, ist für mich offensichtlich. Ich könnte einfach alle 9 Elemente mit Zahlen ausschreiben. Geht es eleganter?

Für die rechte Teilsumme: hmm, hier weiss ich, dass der Nenner ab k>=9 größer als der Zähler ist. Ich habe es mit dem Quotientenkriterium versucht, es so umgeformt, dass ich zeige $ [mm] a_n [/mm] - [mm] a_{n+1} [/mm] > 0 $, dabei kommt aber nichts Vernünftiges raus.

Wenn ich zeige, dass die Folge der rechten Summe monoton fallend ist (dass kein Glied der Folge für k < 9 unendlich ist, habe ich dann schon für die linke Teilsumme gezeigt), sage ich damit auch automatisch, dass die Reihe konvergent ist? Das fände ich sehr elegant!

Hätte jemand einen Tipp?

Viele Grüße,
schnuri

        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:04 So 02.12.2007
Autor: angela.h.b.


> Sie haben gezeigt, dass [mm]j! \ge 4^j \ \forall j \in \IN, j \ge 9 [/mm].
> Zeigen Sie nun dass die Reihe [mm]\sum_{k=0}^{\infty} \frac{2^k}{k!}[/mm]
> konvergiert
>  Hi all,
>  
> ich habe Schwierigkeiten mit dieser Aufgabe. Ich würde so
> vorgehen:
>  
> Die Reihe in zwei Teilsummen teilen (da ich weiss, dass ab
> k>=9 der Nenner >= Zähler):
>  
> [mm]\sum_{k=0}^{\infty} \frac{2^k}{k!} = \sum_{k=0}^{8} \frac{2^k}{k!} + \sum_{k=9}^{\infty} \frac{2^k}{k!}[/mm]
>  
> Für die linke Teilsumme müsste ich doch nur zeigen, dass
> diese [mm]< \infty[/mm] ist? Ich sehe das es so ist, ist für mich
> offensichtlich. Ich könnte einfach alle 9 Elemente mit
> Zahlen ausschreiben. Geht es eleganter?

Hallo,

keiner Ahnung, ob es eleganter geht, aber das ist auch nicht nötig. Wesentlich ist, daß es eine endliche Summe ist, also kommt hier ein fester endlicher Summenwert W heraus, wie groß der ist, interessiert bei dieser Fragestellung nicht, gefragt ist ja nur, ob die Reihe konvergiert.

Nun muß man noch die Konvergenz der rechten Summe sichern.

Hier hilft Dir, was Du im Vorfeld bewiesen hast,

> j! [mm] \ge 4^j [/mm] \ [mm] \forall [/mm] j [mm] \in \IN, [/mm] j [mm] \ge [/mm] 9

Natürlich gilt das auch für k.

Verwende das, und denk an die geometrische Reihe und das Majorantenkriterium.

Gruß v. Angela

Bezug
                
Bezug
Konvergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:08 So 02.12.2007
Autor: schnuri

Hallo Angela,

ich erkenne hier die geometrische Reihe nicht... $ [mm] \sum_{k=9}^{\infty} \frac{2^k}{k!} [/mm] = [mm] \sum_{k=9}^{\infty} \frac{1}{k!} \cdot 2^k [/mm] $ ?? Kann ich da noch irgendwas aufsplitten oder rausziehen?

Ich habe mir eben das Script zur geometrischen Reihe nochmal durchgelesen, wir haben festgestellt, dass ein Glied [mm] s_n [/mm] mit $ [mm] s_n [/mm] = [mm] \frac{1-q^{n+1}}{1-q} [/mm] $ berechnet werden kann und somit $ [mm] \sum_{k=0}^{\infty} q^k [/mm] = [mm] \lim_{n \to \infty} \frac{1-q^{n+1}}{1-q} [/mm] $

Aber was ist mein q??

Ich konnte auch noch keine Reihe finden, die wir schon hatten, die ich für das Majorantenkriterium direkt verwenden kann. $ [mm] \frac{2^k}{k!} [/mm] < [mm] \frac{4^k}{k!} [/mm] \ [mm] \forall [/mm] k [mm] \ge [/mm] 9$ , aber $ [mm] \sum_{k=9}^{\infty} \frac{4^k}{k!} [/mm] $ mit der 4, weiss ich ja auch nicht, ob es konvergiert.

Ich tappe noch total im Dunklen, kannst du mir noch einen Tipp geben?

Danke und Gruß,
schnuri

Bezug
                        
Bezug
Konvergenz einer Reihe: Quotientenkriterium
Status: (Antwort) fertig Status 
Datum: 12:12 So 02.12.2007
Autor: Loddar

Hallo schnuri!


Hattet ihr schon das MBQuotientenkriterium? Damit sollte der Nachweis für die Konvergenz ziemlich schnell gehen.


Gruß
Loddar


Bezug
                                
Bezug
Konvergenz einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:30 So 02.12.2007
Autor: schnuri

Hi Loddar,

oh mann, du hast recht! Ich habe es vorher schon versucht, aber mich einfach verrechnet!!!

Nach dem Quotientenkriterium ist die Reihe konvergent, wenn gilt:
$ [mm] \left| \frac{a_{n+1}}{a_n} \right| [/mm] < 1 $

Eingesetzt für die Teilsumme $ [mm] \sum_{k=9}^{\infty} \frac{2^k}{k!} [/mm] $:

$ [mm] \frac{ \frac{2^{k+1}}{(k+1)!} }{ \frac{2^k}{k!} } [/mm] = [mm] \frac{ 2^{k+1} \cdot k! }{ (k+1)! \cdot 2^k } [/mm] = [mm] \frac{ 2^k \cdot 2 \cdot k! }{ k! \cdot (k+1) \cdot 2^k } [/mm] = [mm] \frac{2}{k+1} \le \frac{2}{9+1} [/mm] < 1$ (da k immer größer gleich 9!)

So ok?

Ich danke euch!! (Beim nächsten mal poste ich direkt alle Fehlversuche)

Gruß,
schnuri

Bezug
                                        
Bezug
Konvergenz einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:45 So 02.12.2007
Autor: schachuzipus

Hallo schnuri,


> Hi Loddar,
>  
> oh mann, du hast recht! Ich habe es vorher schon versucht,
> aber mich einfach verrechnet!!!
>  
> Nach dem Quotientenkriterium ist die Reihe konvergent, wenn
> gilt:
>  [mm]\red{\lim\limits_{n\to\infty}}\left| \frac{a_{n+1}}{a_n} \right|\red{=q} < 1[/mm]

Du musst den limes betrachten und das muss gegen ein festes q mit q<1 streben !!

>  
> Eingesetzt für die Teilsumme

Das QK kannst du auf die "komplette" Reihe anwenden. Das mit den Teilsummen brauchst du nur, wenn du das mit dem Hinweis in der Aufgabenstellung lösen willst, weil du die Abschätzung für die konvergente Majorante (geometr. Reihe) erst für [mm] $k\ge [/mm] 9$ hinbekommst.

[mm]\sum_{k=9}^{\infty} \frac{2^k}{k!} [/mm]:

>  
> [mm] \frac{ \frac{2^{k+1}}{(k+1)!} }{ \frac{2^k}{k!} } [/mm] = [mm] \frac{ 2^{k+1} \cdot k! }{ (k+1)! \cdot 2^k } [/mm] = [mm] \frac{ 2^k \cdot 2 \cdot k! }{ k! \cdot (k+1) \cdot 2^k } [/mm] = [mm] \frac{2}{k+1} [/mm] [ok]

[mm] \le \frac{2}{9+1} [/mm] < 1[/mm]

> (da k immer größer gleich 9!)
>  
> So ok?

[mm] $\lim\limits_{k\to\infty}\frac{2}{k+1}=0$ [/mm] und 0<1, also Konvergenz

> Ich danke euch!! (Beim nächsten mal poste ich direkt alle
> Fehlversuche)
>  
> Gruß,
>  schnuri


LG

schachuzipus

Bezug
                        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 So 02.12.2007
Autor: schachuzipus

Hallo schnuri,

Angela hat doch schon alle Tipps verraten, die du benötigst ;-)


Du hast die Reihe richtig aufgeteilt in

[mm] $\underbrace{\sum\limits_{k=0}^{8}\frac{2^k}{k!}}_{=:M}+\sum\limits_{k=9}^{\infty}\frac{2^k}{k!}$ [/mm]

Nun gilt es, für die hintere Reihe eine konvergente Majorante zu finden

Nach dem Tipp in der Aufgabenstellung ist [mm] $k!\ge 4^k$ [/mm] für [mm] $k\ge [/mm] 9$

Also [mm] $\frac{1}{k!}\le \frac{1}{4^k}$ [/mm]

Damit ist [mm] $M+\sum\limits_{k=9}^{\infty}\frac{2^k}{k!}\le M+\sum\limits_{k=9}^{\infty}\frac{2^k}{\red{4^k}}=.....$ [/mm]


LG

schachuzipus

Bezug
                                
Bezug
Konvergenz einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:45 So 02.12.2007
Autor: schnuri

ahhhh, jetzt hab ich auch das verstanden!

Hast schon fast alles hingeschrieben.

Wegen $ [mm] \frac{1}{k!}\le \frac{1}{4^k} [/mm] $ kann ich $ [mm] \sum\limits_{k=9}^{\infty}\frac{2^k}{4^k} [/mm] = [mm] \sum\limits_{k=9}^{\infty} \left( \frac{1}{2} \right)^k [/mm] $ als Majorante nehmen, die auch konvergiert, denn q = 1/2 < 1

Da für alle $ [mm] a_k [/mm] = [mm] \left( \frac{1}{2} \right)^k \ge \frac{2^k}{k!} [/mm] = [mm] \left| b_k \right| [/mm] \ [mm] \forall [/mm] k [mm] \ge [/mm] 9 $ ist die Reihe $ [mm] \sum_{k=9}^{\infty} \frac{2^k}{k!} [/mm] $ nach dem Majorantenkriterium ebenfalls konvergent

So?

Ihr seid echt die Besten!!! *schleim* :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de