www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz einer Reihe
Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 So 16.11.2008
Autor: Dash

Aufgabe
Prüfen Sie ob die folgende Reihe konvergiert:

[mm] \summe_{k=1}^{ \infty } \bruch{k}{ k^2 + 4} [/mm]


Hallo,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich finde bei dieser Aufgabe keinen Ansatz. Das Wurzelkriterium, als auch das Leibnitzkriterium sind auf diese Reihe nicht anwendbar. Ersteres nicht, weil bei [mm] a_n+1 [/mm] / [mm] a_n [/mm] die 1 rauskommt und q < 1 sein muss und zweiteres nicht, da [mm] -1^k [/mm] nicht in Erscheinung tritt. Das Wurzelkriterium kommt auch nicht in Frage. Bleibt nur noch das Majorantenkriterium. Allerdings fällt mir dazu nichts ein.. Hilfe wäre nützlich und nett.

        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 So 16.11.2008
Autor: abakus


> Prüfen Sie ob die folgende Reihe konvergiert:
>  
> [mm]\summe_{k=1}^{ \infty } \bruch{k}{ k^2 + 4}[/mm]
>  
> Hallo,
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Ich finde bei dieser Aufgabe keinen Ansatz. Das
> Wurzelkriterium, als auch das Leibnitzkriterium sind auf
> diese Reihe nicht anwendbar. Ersteres nicht, weil bei [mm]a_n+1[/mm]
> / [mm]a_n[/mm] die 1 rauskommt und q < 1 sein muss und zweiteres
> nicht, da [mm]-1^k[/mm] nicht in Erscheinung tritt. Das
> Wurzelkriterium kommt auch nicht in Frage. Bleibt nur noch
> das Majorantenkriterium. Allerdings fällt mir dazu nichts
> ein.. Hilfe wäre nützlich und nett.

Hallo,
[mm] \bruch{k}{ k^2 + 4}= \bruch{1}{ k + 4/k} [/mm] , und ab k=5 ist das größer als [mm] \bruch{1}{ k + 1}. [/mm]  
Bereits die Reihe  von  [mm] \bruch{1}{ k + 1} [/mm] divergiert, ist also hier eine divergente Minorante.
Gruß Abakus

Bezug
                
Bezug
Konvergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:14 So 16.11.2008
Autor: Dash

Danke für deine schnelle Antwort.

Eine Frage bleibt. Wie bist du auf [mm] \bruch{1}{ k + 1} [/mm] als divergente Minorante gekommen. Erfahrung oder gibt es eine Sammlung von "Beispielen", welche man für das Minoranten- bzw. Majorantenkriterium anwenden kann?

Bezug
                        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:43 So 16.11.2008
Autor: abakus


> Danke für deine schnelle Antwort.
>  
> Eine Frage bleibt. Wie bist du auf [mm]\bruch{1}{ k + 1}[/mm] als
> divergente Minorante gekommen. Erfahrung oder gibt es eine
> Sammlung von "Beispielen", welche man für das Minoranten-
> bzw. Majorantenkriterium anwenden kann?  

Also: [mm]\bruch{1}{ k + 4/k}[/mm]  ist "fast" 1/k , denn für wachsende k geht 4/k gegen Null.
Dass die Reihe 1/k divergiert, ist ja bekannt.
Aber 1/k ist dummerweise etwas größer als [mm] \bruch{1}{ k + 4/k}, [/mm] kann deshalb nicht selbst als Minorante verwendet werden.
Also habe ich nach einer anderen Minorante gesucht, deren Nenner groß genug ist, um die "kleine Störung" von 4/k zu überdecken.

Da 4/k gegen Null geht, reicht es aus, im Nenner +1 zu rechnen, um dieses Ziel (mit Ausnahme endlich vieler Summanden am Anfang) zu erreichen.

So gesehen ist alles recht einfach und logisch, aber etwas Erfahrung ist sicher nicht ganz nutzlos.
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de