www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz einer Reihe
Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Reihe: Hilfe und Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:41 Mo 07.02.2011
Autor: Maneli

Aufgabe
Ich würde mich freuen, wenn mir jemand hierbei behilflich sein kann :)
Ich möchte zeigen dass dieser Ausdruck gilt:
Die aufgabestellung ist im Anhang!


[a]http://fed.matheplanet.com/mprender.php?stringid=7063178
meine Frage:
womit ist es gezeigt dass die unendliche Reihe(S. Datei) konvergiert? bzw. was fehlt hier noch zum Beweis?


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://matheplanet.com/


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:27 Di 08.02.2011
Autor: fred97

Aus Deinem Beweis werde ich nicht schlau.

Einmal ist von p(x) die Rede, dann von [mm] p(x)_k [/mm] , alles für |x|<1  ? Komisch !

Die Partitionsfunktion p ist für natürliche Zahlen  [mm] \ge [/mm] 0  definiert !

      p(n)= Anzahl der Möglichkeiten n in Summanden zu zerlegen  (einschl. leere Summe)

Die Beh. lautet also:

         [mm] \produkt_{k=1}^{\infty}\bruch{1}{1-x^k}= \summe_{n=0}^{\infty}p(n)x^n [/mm]

FRED

Bezug
                
Bezug
Konvergenz einer Reihe: Rückfrage
Status: (Frage) überfällig Status 
Datum: 13:45 Di 08.02.2011
Autor: Maneli

Hi Fred,

Vielen lieben Dank für die Antwort und deinen Hinweis auf Fehler!
Die Behauptung ist genau so wie du geschrieben hast. bei meinem Beweis muss p(x) durch p(n) ersetzt werden, bzw. [mm] p(x)_{k} [/mm] durch [mm] p_{k}(n) [/mm]
Könntest du mir bitte noch zeigen wie ich dadran gehen soll? und die Konvergenz richtig zeigen soll?

Danke nochmal

> Aus Deinem Beweis werde ich nicht schlau.
>  
> Einmal ist von p(x) die Rede, dann von [mm]p(x)_k[/mm] , alles für
> |x|<1  ? Komisch !
>  
> Die Partitionsfunktion p ist für natürliche Zahlen  [mm]\ge[/mm] 0
>  definiert !
>  
> p(n)= Anzahl der Möglichkeiten n in Summanden zu zerlegen  
> (einschl. leere Summe)
>  
> Die Beh. lautet also:
>  
> [mm]\produkt_{k=1}^{\infty}\bruch{1}{1-x^k}= \summe_{n=0}^{\infty}p(n)x^n[/mm]
>  
> FRED


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                        
Bezug
Konvergenz einer Reihe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Do 10.02.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de