www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Konvergenz eines unbest. Int.
Konvergenz eines unbest. Int. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz eines unbest. Int.: Frage
Status: (Frage) beantwortet Status 
Datum: 18:36 Mo 11.04.2005
Autor: steelscout

Hi,
ich sitze jetz schon seit Ewigkeiten an folgendem Problem:
Ich soll zeigen, dass - und für welche alpha - das unbestimmte Integral  [mm] \integral_{0}^{\infty} {\bruch{x^{\alpha}}{x^{2}+1} dx} [/mm] konvergiert.

Die einzige Möglichkeit, die ich dazu kenne, ist die Konvergenz der Reihe [mm] \summe_{n=0}^{\infty} \bruch{n^{\alpha}}{n^{2}+1} [/mm] nachzuweisen und damit auf die Konvergenz des Integrals zu schließen.
Gefühlsmäßig würd ich ja versuchen ne Majorante zu finden, aber da gingen bisher alle Versuche ins Leere. Da hab ich bisher höchstens
[mm] \summe_{n=0}^{\infty} \bruch{n^{\alpha}}{n^{2}+1}<\bruch{n^{\alpha}}{n^{2}}=\bruch{1}{n^{2-\alpha}}. [/mm] Wodurch Konvergenz bei [mm] 0<\alpha<1 [/mm] gegeben wäre. Bin mit damit allerdings nicht sicher und frage bei euch lieber noch einmal nach. ;)
Mit anderen Konvergenzkriterien (Wurzelkriterium etc.) kam ich auch nicht weit.
Ist das überhaupt der richtige Ansatz mit der Reihe?
Und wenn ja, gebt mir bitte nen kleinen Anstoß bzw. ne Bestätigung. :)

thx steele


Edit: Versuche noch die Formeln zum Funktionieren zu bringen...

        
Bezug
Konvergenz eines unbest. Int.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Mo 11.04.2005
Autor: Max

Hallo steelscout,


du kannst auch die Integrandenfunktion abschätzen. Wenn für $x [mm] \in[a;b] \Rightarrow 0\ge [/mm] f(x) [mm] \ge [/mm] g(x)$ gilt, dass [mm] $\int_a^b [/mm] f(x)dx [mm] \le \int_a^b [/mm] g(x)dx$. Also bei dir für [mm] $\alpha\neq [/mm] 1$:

[mm] $\int_0^{\infty} \frac{x^{\alpha}}{x^2+1}dx \le \int_0^{\infty} \frac{x^{\alpha}}{x^2}dx [/mm] = [mm] \int_0^{\infty} x^{\alpha-2}dx =\left[ \frac{1}{\alpha-1}x^{\alpha-1}\right]_0^{\infty} [/mm] = [mm] \lim_{r \to \infty} \frac{1}{\alpha-1}r^{\alpha-1}$ [/mm]

Damit konvergiert das Integral nur für [mm] $\alpha [/mm] < 1$.

Gruß Max

Bezug
                
Bezug
Konvergenz eines unbest. Int.: Existenz des Grenzwerts/Int.
Status: (Frage) beantwortet Status 
Datum: 22:42 Di 12.04.2005
Autor: steelscout

Hab es mir gerade noch einmal durchgesehn und mir ist aufgefallen, dass besagtes Integral für kein [mm] \alpha [/mm] existieren dürfte, denn
[mm] \left[ \frac{1}{\alpha-1}x^{\alpha-1}\right]_0^{\infty} [/mm] = [mm] \lim_{r \to \infty} \frac{1}{\alpha-1}r^{\alpha-1}-\bruch{0^{\alpha-1}}{\alpha-1} [/mm]
Ist nun [mm] \alpha [/mm] < 1 würde doch der zweite Bruch eine Division durch 0 ergeben und somit nicht existieren.
Und für [mm] \alpha [/mm] > 1 konvergiert es auch nicht, ebenson für [mm] \alpha=1, [/mm] oder?

Bezug
                        
Bezug
Konvergenz eines unbest. Int.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Di 12.04.2005
Autor: Max

Soweit ich weiß gilt [mm] $0^x=0$ [/mm] für [mm] $x\in\IR\setminus\{0\}$. [/mm]

Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de