www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz komplexe Folge
Konvergenz komplexe Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz komplexe Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 Do 10.03.2011
Autor: Loriot95

Aufgabe
Untersuchen Sie die Folge [mm] (a_{n})_{n}\subseteq \IC [/mm] mit [mm] a_{n}:= 2i^{n}+\bruch{1}{2^{n}} [/mm] auf Konvergenz, Häufungspunkte und konvergente Teilfolgen. (Geben Sie für jeden Häufungspunkt eine gegen ihn konvergente Teilfolge an).

Guten Tag,

habe mit dieser Aufgabe so meine Probleme. Habe keine Idee wie ich das Konvergenzverhalten hierbei bestimmen kann.
Was die Teilfolgen betrifft so ist [mm] (a_{2k}) [/mm] = [mm] 2i^{2k}+\bruch{1}{2^{2k}} [/mm] die Teilfolge, bei der  nur reelle Werte rauskommen und [mm] (a_{2k+1}) [/mm] = [mm] 2i^{2k+1}+\bruch{1}{2^{2k+1}} [/mm] dementsprechend die wo komplexe Wert rauskommen.
Hat jemand vielleicht einen Tipp für mich?

LG Loriot95

        
Bezug
Konvergenz komplexe Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Do 10.03.2011
Autor: kamaleonti

Hallo Loriot,
> Untersuchen Sie die Folge [mm](a_{n})_{n}\subseteq \IC[/mm] mit
> [mm]a_{n}:= 2i^{n}+\bruch{1}{2^{n}}[/mm] auf Konvergenz,
> Häufungspunkte und konvergente Teilfolgen. (Geben Sie für
> jeden Häufungspunkt eine gegen ihn konvergente Teilfolge
> an).
>  Guten Tag,
>  
> habe mit dieser Aufgabe so meine Probleme. Habe keine Idee
> wie ich das Konvergenzverhalten hierbei bestimmen kann.
>  Was die Teilfolgen betrifft so ist [mm](a_{2k})[/mm] =
> [mm]2i^{2k}+\bruch{1}{2^{2k}}[/mm] die Teilfolge, bei der  nur
> reelle Werte rauskommen und [mm](a_{2k+1})[/mm] =
> [mm]2i^{2k+1}+\bruch{1}{2^{2k+1}}[/mm] dementsprechend die wo
> komplexe Wert rauskommen.
>  Hat jemand vielleicht einen Tipp für mich?

Der letzte Teil der Folge [mm] \frac{1}{2^n} [/mm] verschwindet für [mm] n\to\infty, [/mm] also ist der erste Teil interessant. Offensichtlich konvergiert die Folge nicht, denn [mm] 2i^{n} [/mm] nimmt zyklisch die Werte 2i, -2, -2i, 2 an. Das sind auch schon die Häufungspunkte. Jetzt sollte es dir nicht schwer fallen, Teilfolgen die gegen diese Werte konvergieren, anzugeben.

>  
> LG Loriot95

Gruß

Bezug
                
Bezug
Konvergenz komplexe Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Do 10.03.2011
Autor: Loriot95

Oh man. Ich steh echt oft aufm Schlauch. Danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de