www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz überprüfen
Konvergenz überprüfen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz überprüfen: Hilfe/ erklärung zur überpr
Status: (Frage) beantwortet Status 
Datum: 16:03 Do 10.01.2008
Autor: howtoadd

hallo an alle,

bin wieder am verzweifeln, also was eine Folge ist verstehe ich auch was konvergente Folgen sind, nun habe ich aber das problem, zu verstehen, wie man denn die konvergenz beweist.
ich verstehe die rechenschritte nicht und habe mir schon voll vieles angeguckt und versucht zu verstehen, aber es klappt irgendwie nicht :(((

hier ein beispiel:
[mm] \limes_{n\rightarrow\infty} \bruch{1}{10 hoch k} [/mm] = 0

so, [mm] \varepsilon [/mm] > 0 und [mm] \varepsilon [/mm] <1, also 0< [mm] \varepsilon [/mm] < 1

das verstehe ich noch.

aber wieso wegen: [mm] \bruch{1}{10 hoch k} [/mm] < [mm] \varepsilon \gdw \bruch{1}{\varepsilon} [/mm] < 10 hoch k

ich verstehe diese rechenschritte dieser aufgabe nicht:

10 hoch k = (1+9) hoch k [mm] \ge [/mm] 1+9k> [mm] \bruch{1}{\varepsilon} [/mm]

iwe kommen die den auf (1+9) ??

und dann auf:

1+9k > [mm] \bruch{1}{\varepsilon} [/mm] , also k> [mm] \bruch{1-\varepsilon}{9 \varepsilon} [/mm]

und dann setzen die noch: k [mm] \varepsilon [/mm] := [mm] \bruch{1-\varepsilon}{9 \varepsilon} [/mm]

dann gilt demzufolge:

k > k [mm] \varepsilon \Rightarrow [/mm] k > [mm] \bruch{1-\varepsilon}{9 \varepsilon} \Rightarrow [/mm] 1+9k > [mm] \bruch{1}{\varepsilon} [/mm]
[mm] \Rightarrow [/mm] (1+9) hoch k > [mm] \bruch{1}{\varepsilon} \Rightarrow [/mm] > [mm] \bruch{1}{10 hoch k} [/mm] < [mm] \varepsilon [/mm]

ich bin dankbar für jede kleine erklärung, ich verstehe einfach diese rechenschritte nicht!


ich habe diese frage in keinem anderen forum gestellt.

        
Bezug
Konvergenz überprüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Do 10.01.2008
Autor: Kroni


> hallo an alle,
>  
> bin wieder am verzweifeln, also was eine Folge ist verstehe
> ich auch was konvergente Folgen sind, nun habe ich aber das
> problem, zu verstehen, wie man denn die konvergenz
> beweist.
>   ich verstehe die rechenschritte nicht und habe mir schon
> voll vieles angeguckt und versucht zu verstehen, aber es
> klappt irgendwie nicht :(((
>  
> hier ein beispiel:
>  [mm]\limes_{n\rightarrow\infty} \bruch{1}{10 hoch k}[/mm] = 0

Hi,

wenn du das siehst, und die Folge gegen 0 konvergiert, muss also ab einem Gewissen n gelten: [mm] |a_k-0|<\epsilon \gdw 1/10^k<\epsilon \forall \epsilon>0 [/mm]
Dann komms du mit Hilfe von Umformungen zu [mm] 10^k>1/\epsilon [/mm]

Soweit noch klar? Das sind einfach Umformungen, indem du mit [mm] 10^k [/mm] multiplizierst auf beiden Seiten und dann durch [mm] \epsilon [/mm] teilst. Das < bleibt so stehen, weil [mm] 10^k>0 [/mm] und [mm] \epsilon>0 [/mm]

>  
> so, [mm]\varepsilon[/mm] > 0 und [mm]\varepsilon[/mm] <1, also 0< [mm]\varepsilon[/mm]
> < 1
>  
> das verstehe ich noch.
>  
> aber wieso wegen: [mm]\bruch{1}{10 hoch k}[/mm] < [mm]\varepsilon \gdw \bruch{1}{\varepsilon}[/mm]
> < 10 hoch k
>  
> ich verstehe diese rechenschritte dieser aufgabe nicht:
>  
> 10 hoch k = (1+9) hoch k [mm]\ge[/mm] 1+9k> [mm]\bruch{1}{\varepsilon}[/mm]
>  
> iwe kommen die den auf (1+9) ??

Nun: [mm] (10)^k=(1+9)^k [/mm] Denn 10=1+9, das kann man ja so schreibeb. Dann wird Bernoulli ausgenutzt, die besagt, dass [mm] $(1+x)^n\ge [/mm] 1+nx$ ist. Die kannst du mit vollständiger Induktion zeigen, habt ihr bestimmt auch schon gemacht.

>  
> und dann auf:
>  
> 1+9k > [mm]\bruch{1}{\varepsilon}[/mm] , also k>
> [mm]\bruch{1-\varepsilon}{9 \varepsilon}[/mm]
>  
> und dann setzen die noch: k [mm]\varepsilon[/mm] :=
> [mm]\bruch{1-\varepsilon}{9 \varepsilon}[/mm]

Ja. Hier wird einfach gesagt, dass [mm] $10^k\ge 1+9k>1/\epsilon$ [/mm] gelten soll. Dass [mm] 10^k>1/\epsilon [/mm] weist du ja schon von oben. Dann wird einfach nur noch das 1+9k dort mit reingeschoben, um [mm] 1/\epsilon [/mm] noch ein wenig kleiner zu machen. Das kann man einfach so machen.

>  
> dann gilt demzufolge:
>  
> k > k [mm]\varepsilon \Rightarrow[/mm] k > [mm]\bruch{1-\varepsilon}{9 \varepsilon} \Rightarrow[/mm]
> 1+9k > [mm]\bruch{1}{\varepsilon}[/mm]
>   [mm]\Rightarrow[/mm] (1+9) hoch k > [mm]\bruch{1}{\varepsilon} \Rightarrow[/mm]

> > [mm]\bruch{1}{10 hoch k}[/mm] < [mm]\varepsilon[/mm]

Da wird dann wieder gesagt, dass [mm] k>k\epsilon, [/mm] wenn ich [mm] \epsilon [/mm] sehr klein wähle. Da vorher [mm] k\epsilon [/mm] definiert wurde als deinen Bruch, kann man sagen, dass diese Ungleichung gilt. Letzendlich gesehen gehst du einfach wieder nur zurück und sagst, dass 1+9k größer ist als [mm] 1/\epsilon. [/mm]
Da du weist, dass [mm] 10^k>1/\epsilon [/mm] bist du fertig, weil du dann gezeigt hast, dass [mm] 1/10^k<\epsilon [/mm] gilt.
Ich finde aber, dass man sich da ein wenig im Kries gedreht hat...aber naja.

Die Rechenschritte, warum und wieso, das sieht man nur, bzw. man kommt nur selbst drauf, wenn man mit der Sache schon viel Erfahrung hat. Von daher ist das kein Problem, wenn man diese Schritte nicht auf Anhieb sieht.

LG

Kroni

>  
> ich bin dankbar für jede kleine erklärung, ich verstehe
> einfach diese rechenschritte nicht!
>
>
> ich habe diese frage in keinem anderen forum gestellt.


Bezug
                
Bezug
Konvergenz überprüfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:55 Do 10.01.2008
Autor: howtoadd

danke für die verständliche erklärung ich werde versuchen das jetzt zu verdauen und wenns immer noch nicht geht, dann muss ich weiterhin fragen stellen :///


danke nochmal!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de