www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz von Folgen
Konvergenz von Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:41 Sa 16.11.2013
Autor: bavarian16

Aufgabe
Es sei a > 0 gegeben. Zeigen Sie, dass die reele Folge, [mm]a_n=\wurzel{a+n}-\wurzel{n} [/mm] gegen 0 konvergiert.
Verwenden Sie das [mm] \epsilon-Kriterium [/mm]

Also es muss ja gelten:

[mm] \left| A-a_n \right| < \epsilon <=>\left| 0-\wurzel{a+n}-\wurzel{n} \right| < \epsilon <=> \wurzel{a+n}-\wurzel{n} < \epsilon [/mm]

Jetzt quadrier ich des mal. Auch auf die Gefahr hin, dass das gegen alle mathemat. Gesetze verstößt und mir gar nichts bringt...

[mm] \-(a+n)-n < \epsilon <=> n> -\bruch{\epsilon^2+a}{2} [/mm]

Jetzt weiß ich aber nicht weiter. Es wär voll nett wenn mir jemand Schritt für Schritt erklären könnte was beim zu tun ist.
Hab schon im Internet geschaut aber nix verstanden.

Dankeschön

        
Bezug
Konvergenz von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:54 Sa 16.11.2013
Autor: reverend

Hallo,

aua.

> Es sei a > 0 gegeben. Zeigen Sie, dass die reele Folge,
> [mm]a_n=\wurzel{a+n}-\wurzel{n}[/mm] gegen 0 konvergiert.
>  Verwenden Sie das [mm]\epsilon-Kriterium[/mm]
>  Also es muss ja gelten:
>  
> [mm]\left| A-a_n \right| < \epsilon <=>\left| 0-\wurzel{a+n}-\wurzel{n} \right| < \epsilon <=> \wurzel{a+n}-\wurzel{n} < \epsilon[/mm]

Besser lesbar wirds, wenn Du das Zeichen [mm] \gdw [/mm] verwendest, das schreibt man hier \gdw - leicht zu merken: genau dann wenn.

> Jetzt quadrier ich des mal. Auch auf die Gefahr hin, dass
> das gegen alle mathemat. Gesetze verstößt und mir gar
> nichts bringt...
>  
> [mm]\-(a+n)-n < \epsilon <=> n> -\bruch{\epsilon^2+a}{2}[/mm]

[haee] Wie geht das denn??? Du hast nicht etwa angefangen, gliedweise zu quadrieren, oder? Selbst dann würde es nicht stimmen.

> Jetzt weiß ich aber nicht weiter. Es wär voll nett wenn
> mir jemand Schritt für Schritt erklären könnte was beim
> zu tun ist.
>  Hab schon im Internet geschaut aber nix verstanden.

Na, wer weiß, was Du gesucht hast.
Hier gilt der gleiche Tipp wie der, den Dir Valérie vorhin woanders gegeben hat: erweitern, so dass die 3. binomische Formel angewandt werden kann. Danach Grenzwertbetrachtung.

> Dankeschön  

Bitteschön.

Grüße
reverend

Bezug
        
Bezug
Konvergenz von Folgen: Korrektur
Status: (Antwort) fertig Status 
Datum: 10:49 Sa 16.11.2013
Autor: Loddar

Hallo bavarian!


> Also es muss ja gelten:

>

> [mm]\left| A-a_n \right| < \epsilon <=>\left| 0-\wurzel{a+n}-\wurzel{n} \right| < \epsilon <=> \wurzel{a+n}-\wurzel{n} < \epsilon[/mm]

[aufgemerkt] Achtung! Du hast nicht korrekt in die Formel für das [mm] $\varepsilon$-Kriterium [/mm] eingesetzt - es fehlen Klammern:

[mm] $\left| \ A-a_n \ \right| [/mm] \ = \ [mm] \left| \ 0-\left( \ \wurzel{a+n}-\wurzel{n} \ \right) \ \right| [/mm] \ = \ [mm] \left| \ -\wurzel{a+n}+\wurzel{n} \ \right| [/mm] \ = \ [mm] \wurzel{a+n}-\wurzel{n} [/mm] \ < \ [mm] \varepsilon$ [/mm]

Am Ende wurde es dann bei Dir (mehr oder minder zufällig) wieder richtig.


Derartige Fehler lassen sich vermeiden, wenn Du von Anfang an rechnest: [mm] $\left| \ a_n-A \ \right| [/mm] \ < \ [mm] \varepsilon$ [/mm] .


Gruß
Loddar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de