www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz von Folgen/Reihen
Konvergenz von Folgen/Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Folgen/Reihen: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:35 Sa 19.11.2011
Autor: Nachfragerin

Aufgabe
a) Sei [mm] \summe_{k=1}^{\infty} a_k [/mm] eine divergente Reihe und sei [mm] a_k [/mm] > 0 für alle [mm] k\in\IN [/mm]. Zeigen Sie, dass es eine divergente Reihe [mm] \summe_{k=1}^{\infty} b_k [/mm] mit [mm] b_k [/mm] > 0 für alle [mm] k\in\IN [/mm] und [mm] \limes_{n \to \infty}\bruch{b_k}{a_k} [/mm] = 0 gibt.

b) Muss die Reihe [mm] \summe_{k=1}^{\infty} a_k^3 [/mm] konvergent sein, falls die Reihe [mm] \summe_{k=1}^{\infty} a_k [/mm] konvergent ist?


Hallo zusammen,
ich komme mit den Aufgaben nicht so recht weiter.

Meine Überlegungen/Fragen:

Zu a):
1. Falls [mm] a_k [/mm] gegen unendlich konvergiert. Dann ist doch auch die Reihe [mm] \summe_{k=1}^{\infty} a_k [/mm] divergent, oder? Könnte es sich in diesem Fall bei [mm] b_k [/mm] um eine konstante Folge handeln?

2. Falls [mm] a_k [/mm] nicht gegen undendlich konvergiert, dann müsste es sich bei [mm] b_k [/mm] doch um eine Nullfolge handeln, damit [mm] \limes_{n \to \infty}\bruch{b_k}{a_k} [/mm] = 0 gilt?

Aber ich habe leider keine Idee, in welche Richtung ich bei der Aufgabe weiter denken muss, beziehungsweise wie ich wirklich eine konkrete Reihe konstruieren kann, sodass die Bedingungen gelten.

Zu b)
Ich bin der Meinung, dass die Aussage nicht gilt, sodass ich, um sie zu widerlegen, ein Gegenbeispiel brauche. Aber auch hier fehlt mir leider der Ansatz.

Ich würde mich über jeden Tipp und jede Idee freuen.
Vielen Dank und liebe Grüße,
die Nachfragerin.

P.S.: Ich bin ganz neu hier. Verzeiht mir bitte eventuelle Fehler die ich mache, und helft mir es besser zu machen. Danke :).

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Konvergenz von Folgen/Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:20 So 20.11.2011
Autor: Helbig


> a) Sei [mm]\summe_{k=1}^{\infty} a_k[/mm] eine divergente Reihe und
> sei [mm]a_k[/mm] > 0 für alle [mm]k\in\IN [/mm]. Zeigen Sie, dass es eine
> divergente Reihe [mm]\summe_{k=1}^{\infty} b_k[/mm] mit [mm]b_k[/mm] > 0 für
> alle [mm]k\in\IN[/mm] und [mm]\limes_{n \to \infty}\bruch{b_k}{a_k}[/mm] = 0
> gibt.
>  
> b) Muss die Reihe [mm]\summe_{k=1}^{\infty} a_k^3[/mm] konvergent
> sein, falls die Reihe [mm]\summe_{k=1}^{\infty} a_k[/mm] konvergent
> ist?
>  
> Hallo zusammen,
>  ich komme mit den Aufgaben nicht so recht weiter.
>  
> Meine Überlegungen/Fragen:
>
> Zu a):
> 1. Falls [mm]a_k[/mm] gegen unendlich konvergiert. Dann ist doch
> auch die Reihe [mm]\summe_{k=1}^{\infty} a_k[/mm] divergent, oder?
> Könnte es sich in diesem Fall bei [mm]b_k[/mm] um eine konstante
> Folge handeln?

Genau das!

>  
> 2. Falls [mm]a_k[/mm] nicht gegen undendlich konvergiert, dann
> müsste es sich bei [mm]b_k[/mm] doch um eine Nullfolge handeln,
> damit [mm]\limes_{n \to \infty}\bruch{b_k}{a_k}[/mm] = 0 gilt?

Richtig. Du mußt eine Nullfolge finden, so daß die Reihe [mm] $\sum_{k=1}^\infty b_k$ [/mm] noch divergiert.

Deine Fallunterscheidung [mm] $a_k\to\infty$ [/mm] und [mm] $a_k\to [/mm] 0$ deckt nicht alle Fälle ab und ist auch unnötig. Untersuche die beiden Fälle [mm] $a_k$ [/mm] ist Nullfolge und [mm] $a_k$ [/mm] ist keine Nullfolge und beachte das Minorantenkriterium.

Bei (b) bin ich der Meinung, daß die Aussage stimmt. Dies ist eine Anwendung des Majorantenkriteriums.

Grüße

Wolfgang


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de