www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Konvergenz von Integralen
Konvergenz von Integralen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Integralen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:49 Mo 11.04.2011
Autor: Speedmaster

Aufgabe
Prüfen Sie nach, ob die folgenden uneigentlichen Integrale Konvergent sind.
[mm]\integral_{0}^{\infty}{(\bruch{x+2}{2x^4+3x^2+2} dx)}[/mm]



Moin moin,

ich sitz grade an dieser Aufgabe und bekomme nicht so richtig nen Ansatz... Das ganze integrieren scheint mir zu weit hergeholt zu sein... Für einen Tipp wäre ich dankbar.

Viele Grüße

        
Bezug
Konvergenz von Integralen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 Mo 11.04.2011
Autor: schachuzipus

Hallo Speedmaster,


> Prüfen Sie nach, ob die folgenden uneigentlichen Integrale
> Konvergent sind.
>  [mm]\integral_{0}^{\infty}{(\bruch{x+2}{2x^4+3x^2+2} dx)}[/mm]
>  
>
> Moin moin,
>  
> ich sitz grade an dieser Aufgabe und bekomme nicht so
> richtig nen Ansatz... Das ganze integrieren scheint mir zu
> weit hergeholt zu sein... Für einen Tipp wäre ich
> dankbar.

Na, da du "nur" auf Konvergenz prüfen sollst, reicht es wohl, gegen ein majorisierendes konvergentes Integral abzuschätzen.

Tipp: mit [mm]f(x)=\frac{x+2}{2x^4+3x^2+2}[/mm] ist

[mm]\int\limits_{0}^{\infty}{f(x) \ dx} \ = \ \int\limits_{0}^2{f(x) \ dx} \ + \ \int\limits_{2}^{\infty}{f(x) \ dx}[/mm]

Im kompakten Intervall [mm][0,2][/mm] ist f schön stetig, nimmt also sein Maximum [mm]M[/mm] an.

Das erste Integral kannst du also geeignet abschätzen durch ....?

Für [mm]x\ge 2[/mm] kannst du [mm]f(x)[/mm] grob nach oben abschätzen.

Vergrößere den Zähler zu [mm]2x[/mm] und verkleiner den Nenner ganz grob zu [mm]2x^4[/mm]

Dann ergibt sich was?

>  
> Viele Grüße

Gruß

schachuzipus


Bezug
                
Bezug
Konvergenz von Integralen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 Mo 11.04.2011
Autor: Speedmaster


Okay, ich habe jetzt
[mm]\integral_{0}^{2}{\bruch{x+2}{2x^4+3x^2+2} dx}+\integral_{2}^{\infty}{\bruch{1}{x^3} dx} \textrm{ da} \integral_{2}^{\infty}{\bruch{x+2}{2x^4+3x^2+2} dx}<\integral_{2}^{\infty}{\bruch{2x}{2x^4} dx} [/mm]

Nun kann ich zeigen, dass das Integral auf [2,[mm]\infty[/mm]] Konvergiert.

Für das Interval von 0 bis 2 steh ich nun wieder vor dem selben Problem...


[mm]\integral_{0}^{2}{\bruch{x}{2x^4+3x^2+2} dx}+2\integral_{0}^{2}{\bruch{1}{x^3} dx} <\integral_{0}^{2}{\bruch{x}{2x^4} dx}+2\integral_{0}^{2}{\bruch{1}{2x^4} dx}<\integral_{0}^{2}{\bruch{1}{x^3} dx}+\integral_{0}^{}{\bruch{1}{x^3} dx}=2\integral_{0}^{2}{\bruch{1}{x^3} dx} [/mm]

Alles Klar, Problem gelöst =)

Vielen Dank



Bezug
                        
Bezug
Konvergenz von Integralen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:42 Di 12.04.2011
Autor: schachuzipus

Hallo nochmal,


>
> Okay, ich habe jetzt
>  [mm]\integral_{0}^{2}{\bruch{x+2}{2x^4+3x^2+2} dx}+\integral_{2}^{\infty}{\bruch{1}{x^3} dx} \textrm{ da} \integral_{2}^{\infty}{\bruch{x+2}{2x^4+3x^2+2} dx}<\integral_{2}^{\infty}{\bruch{2x}{2x^4} dx}[/mm] [ok]

Jo, genau dieses Integral hatte ich im Sinn als majorisierendes konnvergentes Integral

>  
> Nun kann ich zeigen, dass das Integral auf [2,[mm]\infty[/mm]]
> Konvergiert.

Genau! Einfach ausintegrieren ;-)

>  
> Für das Interval von 0 bis 2 steh ich nun wieder vor dem
> selben Problem...
>  
>
> [mm]\integral_{0}^{2}{\bruch{x}{2x^4+3x^2+2} dx}+2\integral_{0}^{2}{\bruch{1}{x^3} dx} <\integral_{0}^{2}{\bruch{x}{2x^4} dx}+2\integral_{0}^{2}{\bruch{1}{2x^4} dx}<\integral_{0}^{2}{\bruch{1}{x^3} dx}+\integral_{0}^{}{\bruch{1}{x^3} dx}=2\integral_{0}^{2}{\bruch{1}{x^3} dx}[/mm]

Dieses Integral divergiert, der Integrand hat in x=0 einen Pol ...

>  
> Alles Klar, Problem gelöst =)

Nicht ganz.

Ich sagte ja, dass der Integrand auf dem kompakten Intervall [mm][0,2][/mm] stetig ist und damit dort sein Maximum annimmt.

Das brauchst du nichtmal auszurechnen.

Schätze einfach durch die Rechteckfläche [mm]2\cdot{}\max\limits_{x\in[0,2]}f(x)[/mm] ab (2 ist die Länge von 0 bis 2)

Das hat einen endlichen Wert, damit dann auch das Gesamtintegral.

Wenn du Spaß dran hast, kannst du auch das Maximum auf [mm][0,2][/mm] berechnen ...

>
> Vielen Dank
>  
>  

Gruß

schachuzipus


Bezug
                                
Bezug
Konvergenz von Integralen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:31 Di 12.04.2011
Autor: Speedmaster

Habe es anders gelöst, da meine erste Idee nicht stimmen kann.
[mm]\integral_{0}^{\infty}{\bruch{2x+2}{2x^4+3x^3+2}f(x) dx}<2\integral_{0}^{\infty}{\bruch{1}{x^2+1} dx}[/mm]

Ich hab die zwischenschritte hier mal nicht aufgeführt... damit lässt sich auf jeden fall zeigen, dass das integral konvergiert, was es auch sollte

http://www.wolframalpha.com/input/?i=integral&a=*C.integral-_*Calculator.dflt-&f2=%28x%2B2%29%2F%282x^4%2B3x^3%2B2%29&f=Integral.integrand_%28x%2B2%29%2F%282x^4%2B3x^3%2B2%29&f3=0&f=Integral.rangestart_0&f4=infinity&f=Integral.rangeend_infinity&a=*FVarOpt.1-_**-.***Integral.variable---.**Integral.rangestart-.*Integral.rangeend---

[mm]F=2arctan(x)[/mm]

Viele Grüße



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de