www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Konvergenz von Reihen
Konvergenz von Reihen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Reihen: Bitte um Hilfe von Schlauen!
Status: (Frage) für Interessierte Status 
Datum: 14:56 Fr 26.11.2004
Autor: Verzweifelte

Hallo Leute,
ich hab hier zwei Problemaufgaben, weil ich nicht weiß, wie an diese Aufgaben rangehen soll. Bitte deshalb um Hilfe und Erklärung, wie man auf die Lösung kommt!
1) Man soll zeigen, dass jede Zahl a  [mm] \in [/mm] [0,1[ in der Form

a= [mm] \summe_{i=1}^{ \infty} d_{i} 10^{-i} [/mm] , wobei [mm] d_{i} \in [/mm] {0,1,...,9}

geschrieben werden kann.
Wie funktioniert die Lösung, wei muss ich vorgehen? Ich mein, es ist ja logisch dass jede Zahl, die kleiner ist als 1 so dargestellt wird???!!! Ich bitte um eine Lösung!
2) a)Man soll  [mm] \bruch{}{1+ x^{2}} [/mm] als eine Potenzreihe in x schreiben und man soll dann den KOnvergenzradius bestimmen.
2b) Im zweiten Teil muss man den Konvergenzradius der Potenzreihe  [mm] \summe_{n=0}^{ \infty} \bruch{ x^{n}}{ \wurzel{n!}} [/mm] bestimmen.  

Ich muss die Aufgaben bis Montag abgeben. Deshalb suche ich hier einen schlauen Mathematiker, der die Lösungen weiß und mir erklärt!
Danke, die Verzweifelte

        
Bezug
Konvergenz von Reihen: Lösungsideen
Status: (Antwort) fertig Status 
Datum: 15:16 Fr 26.11.2004
Autor: informix

Hallo Verzweifelte,

unsere Gemeinschaft lebt vom freiwilligen Geben und Nehmen.

Vorhilfe und MatheRaum sind keine Lösungsmaschine, sondern geben Hilfe zur Selbsthilfe. Das bedeutet, dass in jeder Fragestellung auch deinen bisherigen Lösungsversuchen ein Platz zusteht.

Wir bitten dich deshalb darum, uns deine bisherigen Bemühungen oder Ideen ein wenig konkreter mitzuteilen, denn nur so sind wir in der Lage, dir bei deinen Problemen in Mathematik angemessen zu helfen.

Bitte lies auch unsere Forenregeln und richte dich danach:
Keine Fristen, kein Posting ohne Lösungsideen oder -ansätze, etc.



Bezug
        
Bezug
Konvergenz von Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:48 Fr 26.11.2004
Autor: Marcel

Hallo Verzweifelte,

die erste Frage hast du bereits hier gestellt:
https://matheraum.de/read?i=27414
Wenn du die Antwort nicht verstehst, Frage dort nach!

Die zweite hast du schonmal hier gestellt:
https://matheraum.de/read?i=27420

Bis darauf, dass Friedrich bei der zweiten vergessen hat, limsup dabeizuschreiben, ist das (im Wesentlichen; man sollte genauer schreiben:
[m]\limsup_{n \to \infty}|a_{n+1}/a_n|=0<1[/m]) korrekt.

Demnächst werde ich deine Doppelt- und Mehrfachpostings kommentarlos löschen. Wie wäre es denn, wenn du mal eigene Ideen mitlieferst?
(Die müssen nicht richtig sein! Du sollst uns nur deine Gedanken mitteilen, die du dir zu deinen Aufgaben gemacht hast!)
Anscheinend ist dir immer noch nicht klar, wie dieses Forum funktioniert!!!

Viele Grüße,
Marcel

Bezug
        
Bezug
Konvergenz von Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:14 Fr 26.11.2004
Autor: Stefan

Hallo!

Ich kann mich meinen Vorrednern nur anschließen. Wir haben dich schon häufiger verwarnt, weil du die Forenregeln grob missachtet hast. Damit ist ab jetzt Schluss! [grummel]

Ich werde den Webmaster bitten deinen Account augenblicklich zu löschen. Weitere Worte der Erklärung sind zwecklos.

Viele Grüße und tschüss!
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de