www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz von Reihen
Konvergenz von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Reihen: Lösung/ Tipps zur Lösung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:52 Do 06.12.2007
Autor: alpakas

Aufgabe
a)  Sei [mm] \summe a_n [/mm] eine absolut konvergente Reihe und [mm] (b_n) [/mm] eine konvergente Folge. Zeigen Sie: Die Reihe [mm] \summe a_n b_n [/mm] konvergiert absolut.

b) Entscheiden sie, ob folgende Aussagen richtig sind und begründen sie.

1.  [mm] \summe_{n=1}^{\infty} a_n [/mm] konvergent. [mm] (b_n) [/mm] eine Nullfolge [mm] \Rightarrow \summe_{n=1}^{\infty} a_n b_n [/mm] konvergent

2.  [mm] \summe_{n=1}^{\infty} a_n [/mm] absolut konvergent, [mm] (b_n) [/mm] Nullfolge [mm] \Rightarrow \summe_{n=1}^{\infty} a_n b_n [/mm] konvergent

3. [mm] \summe_{n=1}^{\infty} a_n [/mm] divergent, [mm] (b_n) [/mm] divergent  [mm] \Rightarrow \summe_{n=1}^{\infty} a_n b_n [/mm] divergent

Könnt ihr mir auch hier helfen? Ich komme einfach nicht weiter :(  Sitze schon paar Tage an der Aufgabe fest und auch meine ganzen Bücher und die Tipps darin helfen mir nicht!! Bräuchte ne Lösung um nachzuvollziehen, wei man damit überhaupt umgeht. .....

lg alpakas

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:10 Do 06.12.2007
Autor: angela.h.b.


> a)  Sei [mm]\summe a_n[/mm] eine absolut konvergente Reihe und [mm](b_n)[/mm]
> eine konvergente Folge. Zeigen Sie: Die Reihe [mm]\summe a_n b_n[/mm]
> konvergiert absolut.

Hallo,

hier kannst Du sicher die Beschränktheit v. [mm] (b_n) [/mm] gebrauchen und dann noch das Majorantenkriterium.

>  
> b) Entscheiden sie, ob folgende Aussagen richtig sind und
> begründen sie.

Hier solltest Du die Behauptungen mal für ein paar Dir bekannte Reihen und Folgen durchtesten, um eine Ahnung davon zu bekommen, ob Du beweisen oder widerlegen möchtest.

Gruß v. Angela

Bezug
                
Bezug
Konvergenz von Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:38 Do 06.12.2007
Autor: alpakas

ich habe sowas aber noch nie gemacht!! ich habe auch an anderen Reihen sowas noch nicht getestet! Ich bin quasi ins "kalte Wasser" geschmissen worden mit der Aufgabe!! :(

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de