www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz von Reihen
Konvergenz von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Reihen: Quotientenkriterium?
Status: (Frage) beantwortet Status 
Datum: 19:34 Mo 18.02.2008
Autor: devilsdoormat

Aufgabe
Untersuche folgende Reihen auf Konvergenzverhalten:

[mm]\sum_{k=1}^{\infty} \bruch{n^4}{3^n}[/mm] und [mm]\sum_{k=1}^{\infty} \bruch{n^2-2n+1}{n^3}[/mm]

Hallo,

ich habe diese Frage in keinem anderen Forum gestellt.

Das waren heute zwei Klausuraufgaben von mir. Ich habe beide jeweils etwas... unkonventionell gelöst, weil ich auf keine schönere Lösung gekommen bin:

1. [mm]\sum_{k=1}^{\infty} \bruch{n^4}{3^n}[/mm]

mit dem Quotienkriterium folgt zunächst:

[mm]\left| \bruch{(n+1)^4 \cdot 3^n}{n^4 \cdot 3^{n+1}} \right| = \left| \bruch{n^4 + 4n^3 + 6n^2 + 4n + 1}{n^4 \cdot 3} \right| = \left| \bruch{1 + 4/n + 6/n^2 + 4/n^3 + 1/n^4}{3} \right|\le \bruch{2}{3}[/mm] ab [mm]n_0 = 10 [/mm]

das [mm]n_0 = 10 [/mm] habe ich so gewählt, weil es auf jeden Fall groß genug war, damit die Aussage richtig war. Ich hatte keine Zeit mehr es richtig zu bestimmen. Ich weiß, dass es so ein wenig eine "brutal force"-Methode ist das [mm](n+1)^4[/mm] so auszumultiplizieren, aber es müsste doch dennoch stimmen, oder?

2. [mm]\sum_{k=1}^{\infty} \bruch{n^2-2n-1}{n^3}[/mm]

hier habe ich die Summe erst mal auseinandergezogen:

[mm] \sum_{k=1}^{\infty} \bruch{n^2-2n+1}{n^3} = \sum_{k=1}^{\infty} \bruch{n^2}{n^3} + \sum_{k=1}^{\infty} \bruch{-2n}{n^3} + \sum_{k=1}^{\infty} \bruch{1}{n^3} = \sum_{k=1}^{\infty} \bruch{1}{n} -2 \cdot \sum_{k=1}^{\infty} \bruch{1}{n^2} + \sum_{k=1}^{\infty} \bruch{1}{n^3}[/mm]

Dann habe ich argumentiert, dass die letzten beiden Summanden konvergent sind also ihr Grenzwert endlich ist. Da nun der erste Summand die harmonische Reihe ist und daher divergiert, divergiert auch die gesamte Reihe. Auch diese Argumentation bedient sich nicht unbedingt der beliebten Konvergenzkriterien.
Von daher bin ich mir bei beiden Reihen echt nicht sicher, ob ich das so richtig gemacht habe. Wäre schön, wenn ihr mir mal Gewissheit verschaffen könntet.

Vielen Dank und lieben Gruß!

        
Bezug
Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Mo 18.02.2008
Autor: dormant

Hi!

> mit dem Quotienkriterium folgt zunächst:
>  
> [mm]\left| \bruch{(n+1)^4 \cdot 3^n}{n^4 \cdot 3^{n+1}} \right| = \left| \bruch{n^4 + 4n^3 + 6n^2 + 4n + 1}{n^4 \cdot 3} \right| = \left| \bruch{1 + 4/n + 6/n^2 + 4/n^3 + 1/n^4}{3} \right|\le \bruch{2}{3}[/mm]
> ab [mm]n_0 = 10[/mm]

Das passt.
  

> das [mm]n_0 = 10[/mm] habe ich so gewählt, weil es auf jeden Fall
> groß genug war, damit die Aussage richtig war. Ich hatte
> keine Zeit mehr es richtig zu bestimmen. Ich weiß, dass es
> so ein wenig eine "brutal force"-Methode ist das [mm](n+1)^4[/mm] so
> auszumultiplizieren, aber es müsste doch dennoch stimmen,
> oder?

Naja, brute force ist es nicht - das führt am Schnellsten zum Ergebnis
  

> 2. [mm]\sum_{k=1}^{\infty} \bruch{n^2-2n-1}{n^3}[/mm]
>  
> hier habe ich die Summe erst mal auseinandergezogen:
>  
> [mm]\sum_{k=1}^{\infty} \bruch{n^2-2n+1}{n^3} = \sum_{k=1}^{\infty} \bruch{n^2}{n^3} + \sum_{k=1}^{\infty} \bruch{-2n}{n^3} + \sum_{k=1}^{\infty} \bruch{1}{n^3} = \sum_{k=1}^{\infty} \bruch{1}{n} -2 \cdot \sum_{k=1}^{\infty} \bruch{1}{n^2} + \sum_{k=1}^{\infty} \bruch{1}{n^3}[/mm]

Der erste Summand divergiert, alles andere ist positiv, Reihe divergiert. Fertig.

Gruss,
dormant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de