www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz von Reihen
Konvergenz von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Reihen: Idee
Status: (Frage) beantwortet Status 
Datum: 09:22 Fr 12.02.2010
Autor: fagottator

Aufgabe
a) Zeige, dass die Reihe [mm] \summe_{k=2}^{\infty} \bruch{1}{k(log(k))^\alpha} [/mm] für [mm] \alpha [/mm] > 1 konvergiert.

Hi!

Ich bräuchte mal eine Idee, wie ich an die Aufgabe herangehen soll. Ich habe es schon mit dem Quotienten-Kriterium versucht und auch mit dem Majoranten-Kriterium, aber beide scheiterten... [verwirrt]

        
Bezug
Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:48 Fr 12.02.2010
Autor: felixf

Moin!

> a) Zeige, dass die Reihe [mm]\summe_{k=2}^{\infty} \bruch{1}{k(log(k))^\alpha}[/mm]
> für [mm]\alpha[/mm] > 1 konvergiert.
>
> Ich bräuchte mal eine Idee, wie ich an die Aufgabe
> herangehen soll. Ich habe es schon mit dem
> Quotienten-Kriterium versucht und auch mit dem
> Majoranten-Kriterium, aber beide scheiterten... [verwirrt]

Kennst du das []Integralkriterium?

Beachte, dass die Ableitung von [mm] $\log [/mm] k$ gerade [mm] $\frac{1}{k}$ [/mm] ist; dann kannst du mit der Kettenregel sehr einfach eine Stammfunktion hinschreiben.

LG Felix


Bezug
                
Bezug
Konvergenz von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:41 Fr 12.02.2010
Autor: fagottator

Ich hab das zwar schonmal gehört, aber jetzt in der Vorlesung kam das nicht vor. Wenn die Aufgabe nur damit lösbar ist, dann brauch ich die Aufgabe nicht lösen können. Sie stammt aus einem Fragenkatalog unserer Fachschaft, der in diesem Fall dann wohl nicht an unsere Vorlesung angeglichen ist... ;-)

Bezug
                        
Bezug
Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:49 Fr 12.02.2010
Autor: steppenhahn

Hallo!

Womöglich hast du recht - ich denke, man könnte aber auch mit dem []Verdichtungskriterium hier zu Rande kommen - vielleicht hattet ihr das mal.

Grüße,
Stefan

Bezug
                                
Bezug
Konvergenz von Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:00 Fr 12.02.2010
Autor: felixf

Hallo Stefan,

> Womöglich hast du recht - ich denke, man könnte aber auch
> mit dem
> []Verdichtungskriterium
> hier zu Rande kommen - vielleicht hattet ihr das mal.

ja, das kann man hier anwenden, nur: man erhaelt als Ergebnis im wesentlichen die Reihe [mm] $\sum_{n=1}^\infty \frac{1}{n^\alpha}$, $\alpha [/mm] > 0$. Und fuer die Konvergenz dieser Reihe benutzt man normalerweise wieder das Integralkriterium.

Man kann die Konvergenz sicher auch ohne das Integralkriterium zeigen, die Frage ist nur wie muehsam das ist. Die Aufgabe gehoert vom Typ her zumindest recht eindeutig zu den Integralkriterium-Aufgaben.

LG Felix


Bezug
                                        
Bezug
Konvergenz von Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:57 Fr 12.02.2010
Autor: steppenhahn

Hallo Felix,

> Hallo Stefan,
>  
> > Womöglich hast du recht - ich denke, man könnte aber auch
> > mit dem
> >
> []Verdichtungskriterium
> > hier zu Rande kommen - vielleicht hattet ihr das mal.
>  
> ja, das kann man hier anwenden, nur: man erhaelt als
> Ergebnis im wesentlichen die Reihe [mm]\sum_{n=1}^\infty \frac{1}{n^\alpha}[/mm],
> [mm]\alpha > 0[/mm]. Und fuer die Konvergenz dieser Reihe benutzt
> man normalerweise wieder das Integralkriterium.

Man kann aber auch wieder das Verdichtungskriterium benutzen :-)
Dann erhält man:

[mm] $2^{k}*a_{2^{k}} [/mm] = [mm] 2^{k}*\frac{1}{(2^{k})^{\alpha}} [/mm] = [mm] 2^{(1-\alpha)*k} [/mm] = [mm] (2^{1-\alpha})^{k}$ [/mm]

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de