www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz von Taylor
Konvergenz von Taylor < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Taylor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:09 Mi 16.12.2009
Autor: lauralikesmath

Hallo!

Ich soll hier bei einer Aufgabe von einer gegebenen funktion f die Taylorreihe und deren Konvergenzradius bestimmen. Das habe ich schon hinbekommen.
Jetzt ist die Frage ob diese Taylorreihe gegen f konvergiert bzw auf welchem Intervall.

Das Intervall kriege ich über den Konvergenradius (und die Randstellen muss ich eben noch extra betrachten) - Aber wie komme ich darauf, ob die Reihe gegen f konvergiert?

Wäre super wenn mir jemand diese (allgemein gehaltene) Frage beantworten könnte! :)

LG
Laura

        
Bezug
Konvergenz von Taylor: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 Mi 16.12.2009
Autor: fred97

Im Reellen kann die Taylorreihe von f gegen f konvergieren, muß aber nicht.

Also teile mal mit, welche Funktion Du betrachtest und wie ihre Taylorreihe aussieht.
Dann sehen wir weiter

FRED

Bezug
                
Bezug
Konvergenz von Taylor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 Mi 16.12.2009
Autor: lauralikesmath

Ok:

f(x) = 1/(1-x)

Taylor in 2: T(f) = [mm] \summe_{k=1}^{unendl.} [/mm] (-1)^(k+1) (x-2)^(k)

Konvergenzradius: r=1

"Konvergenzintervall": (1;3]


Was für Möglichkeiten gibt es denn um die Konvergenz gegen f herauszufinden?

Bezug
                        
Bezug
Konvergenz von Taylor: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 Mi 16.12.2009
Autor: fred97


> Ok:
>  
> f(x) = 1/(1-x)
>  
> Taylor in 2: T(f) = [mm]\summe_{k=1}^{unendl.}[/mm] (-1)^(k+1)
> (x-2)^(k)


Es muß sicher [mm]\summe_{k=0}^{\infty} (-1)^{k+1} (x-2)^k [/mm] lauten

Tipp: geometrische Reihe

FRED

>
> Konvergenzradius: r=1
>  
> "Konvergenzintervall": (1;3]
>  
>
> Was für Möglichkeiten gibt es denn um die Konvergenz
> gegen f herauszufinden?


Bezug
                                
Bezug
Konvergenz von Taylor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:20 Mi 16.12.2009
Autor: lauralikesmath

Oh, also die geom Reihe konvergiert ja für |q|<1 wie folgt:

[mm] \summe_{k=0}^{\infty} q^{k} [/mm] = 1/(1-q)

Aber wenn ich für [mm] q=(-1)^{k+1}(x-2)^{k} [/mm] einsetze dann ist das doch nicht wieder die Urpsungsfunktion, oder?




EDIT:
Achso, mein Q ist natürlich (-1)(x-2). Dann erklärt sich das auch ;-)
Danke für den Tipp!


Aber was mache ich dann bei Aufgaben die nicht die Form einer mir bekannten Reihe haben?

Bezug
                                        
Bezug
Konvergenz von Taylor: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Mi 16.12.2009
Autor: fred97


> Oh, also die geom Reihe konvergiert ja für |q|<1 wie
> folgt:
>  
> [mm]\summe_{k=0}^{\infty} q^{k}[/mm] = 1/(1-q)
>  
> Aber wenn ich für [mm]q=(-1)^{k+1}(x-2)^{k}[/mm] einsetze

Unfug !

> dann ist
> das doch nicht wieder die Urpsungsfunktion, oder?


Setze  [mm]q=(-1)(x-2)= (2-x)[/mm] . Dann ist Deine Taylorreihe

           $ [mm] \summe_{k=0}^{\infty} (-1)^{k+1} (x-2)^k [/mm] = [mm] -\summe_{k=0}^{\infty}q^k= \bruch{-1}{1-(2-x)}= \bruch{1}{1-x} [/mm] $

FRED

>  


Bezug
                                                
Bezug
Konvergenz von Taylor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:18 Mi 16.12.2009
Autor: lauralikesmath

Ok, Danke!


Ist denn das Vergleichen mit bekannten Reihen die einzige Lösungsmöglichkeit für solche Aufgaben? Oder gibt es da noch einen "allgemeinen" Weg?

Bezug
                                                        
Bezug
Konvergenz von Taylor: Antwort
Status: (Antwort) fertig Status 
Datum: 06:32 Do 17.12.2009
Autor: fred97


> Ok, Danke!
>  
>
> Ist denn das Vergleichen mit bekannten Reihen die einzige
> Lösungsmöglichkeit für solche Aufgaben? Oder gibt es da
> noch einen "allgemeinen" Weg?

nein

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de