www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Analysis" - Konvergenz zeigen
Konvergenz zeigen < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 Fr 09.05.2014
Autor: Cyborg

Aufgabe
Sei [mm] \Omega [/mm] = [0,1] ein Grundraum, P das auf [0,1] eingeschränkte Lebesguemaß, d.h. P([a,b])=b-a für alle a [mm] \le [/mm] b [mm] \in \Omega. [/mm] Die Intervalle [mm] I_n [/mm] = [mm] [a_n, b_n] [/mm] seien rekursiv definiert durch:
[mm] a_1=0 [/mm]
[mm] b_n [/mm] = [mm] a_n [/mm] + [mm] \bruch{1}{n} [/mm]
[mm] a_{n+1} [/mm] = [mm] b_n [/mm]

Daraus konstruieren wir die Intervalle [mm] J_n:= I_n [/mm] mod1, womit gemeint ist, dass bei allen Elementen von [mm] I_n [/mm] nur die Nachkommastellen genommen werden und in [mm] J_n [/mm] getan. Also:
[mm] J_n:= [/mm] {x- [mm] \perp x\perp [/mm] |x [mm] \in I_n [/mm] } .

Die Folge von Zufallsvariablen [mm] X_n [/mm] ist definiert als
[mm] X_n [/mm] (w) = [mm] 1_{J_n}(w) [/mm]

(1=Indikatorfunktion)

a) Zeigen Sie, dass diese Folge in Wahrscheinlichkeit gegen 0 konvergiert
b) Zeigen Sie, dass sie nicht fastsicher konvergiert

Ich weiß leider gar nicht wie ich anfangen soll...
Kann mir jemand einen Tipp geben? Vielleicht eine Skizze wie das ganze überhaupt aussieht oder so?



        
Bezug
Konvergenz zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Sa 10.05.2014
Autor: Gonozal_IX

Hiho,

vergiss diese "mod" Geschichte mal, die stellt nur sicher, dass du nicht aus [0,1] herausläufst, sondern sobald du bspw. das Intervall [mm] $\left[1,1+\bruch{1}{n}\right]$ [/mm] stattdessen wieder an den Anfang springst und [mm] $\left[0,\bruch{1}{n}\right]$ [/mm] erhälst.

Anschaulich erhälst du also immer kleinere Intervalle, die von 0 nach 1 durch das Intervall [0,1] laufen.

Nun zum Problem: Du hast also Intervalle der Form [mm] $A_n [/mm] = [mm] \left[a_n,a_n +\bruch{1}{n}\right]$. [/mm]

1.) Was ist nun [mm] P(A_n) [/mm] und wogegen konvergieren folglich die Indikatorfunktionen davon?

2.) Nimm nun ein beliebiges [mm] $x\in [/mm] [0,1]$ und erinnere dich daran, dass die Intervalle immer durch [0,1] laufen (und damit an jedem x mal vorbeilaufen).

Damit gilt für jedes [mm] X_n(x) [/mm] was?

D.h. für [mm] $\limsup_{n\to\infty} X_n(x)$? [/mm] Und für [mm] $\liminf_{n\to\infty} X_n(x)$ [/mm]

Was folgt daraus für [mm] $\lim_{n\to\infty} X_n(x)$? [/mm]

Was kann [mm] X_n [/mm] also nicht sein?

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de