www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Konvergenzarten
Konvergenzarten < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzarten: Tipps
Status: (Frage) beantwortet Status 
Datum: 18:49 Mo 19.07.2010
Autor: rulf007

Aufgabe
Gegeben sei eine Folge von Zufallsvariablen [mm] X_{n}:=\wurzel{n}*1_{(\bruch{1}{n},\bruch{2}{n})} [/mm] mit n=2,3,... auf dem Wahrscheinlichkeitsraum [mm] (\Omega,\mathcal{A},P)=([0,1],\mathcal{B}([0,1]),\lambda), [/mm] wobei [mm] \lambda [/mm] die Gleichverteilung auf [0,1] ist.

(i) Konvergiert [mm] (X_{n}) [/mm] stochastisch
(ii) Konvergiert [mm] (X_{n}) [/mm] P-fast sicher
(iii) Konvergiert [mm] (X_{n}) [/mm] im p-tel Mittel?

Hallo!

Das war eine Aufgabe aus meiner letzten W-Theorie-Klausur. Hab diese leider nicht bestanden und es gibt auch keine Musterlösung dafür.

Wahrscheinlich kommt in der Nachholklausur auch so eine Aufgabe dran und deswegen wüsst ich gerne wie man an eine solche Aufgabe rangeht bzw. (Teil-)Lösungen von der Aufgabe wären mir auch sehr hilfreich.

Danke für eure Mühen!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenzarten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Mo 19.07.2010
Autor: Gonozal_IX

Huhu,

wo sind deine Ansätze, wo sind die Probleme?
Ohne dass du zumindest zeigst, wie du es gemacht hast, können wir dir nicht helfen und deine Fehler aufzeigen....

MFG,
Gono.

Bezug
                
Bezug
Konvergenzarten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 Mo 19.07.2010
Autor: rulf007

Also zur stochastischen Konv hab ich folgenden Ansatz:

Ich überprüfe ob Konvergenz bzgl X=0 vorliegt

[mm] \limes_{n\rightarrow\infty} P(|X_{n}-X|>\varepsilon)=\limes_{n\rightarrow\infty} P(|X_{n}|>\varepsilon)= \bruch{1}{n}\to [/mm] 0

weil [mm] \lambda(\bruch{1}{n},\bruch{2}{n})=\bruch{1}{n} [/mm] ist.

Also liegt stoch. Konv bzgl "0" vor?!

Zur Konvergenz im pten Mittel, für p=1:

[mm] E[|X_{n}-0|]=\wurzel{n}*\bruch{1}{n}\to [/mm] 0.

Also liegt auch Konvergenz im ersten Mittel vor?!

Aber nicht Konvergenz im 2ten Mittel, da [mm] E[|X_{n}-0|^2]=E[n*1_{[\bruch{1}{n},\bruch{2}{n}]}]=1 [/mm]

Bei der fast-sicheren Konvergenz kenn ich zwar auch die Definition, aber weiß nicht wie ich das ansetzen kann

Bezug
                        
Bezug
Konvergenzarten: Antwort
Status: (Antwort) fertig Status 
Datum: 04:01 Di 20.07.2010
Autor: gfm


> Also zur stochastischen Konv hab ich folgenden Ansatz:
>  
> Ich überprüfe ob Konvergenz bzgl X=0 vorliegt
>  
> [mm]\limes_{n\rightarrow\infty} P(|X_{n}-X|>\varepsilon)=\limes_{n\rightarrow\infty} P(|X_{n}|>\varepsilon)= \bruch{1}{n}\to[/mm]
> 0
>  
> weil [mm]\lambda(\bruch{1}{n},\bruch{2}{n})=\bruch{1}{n}[/mm] ist.

Mit [mm]X=0[/mm], [mm]I_n:=[1/n,2/n][/mm], [mm]\Omega:=[0,1][/mm] und [mm]\epsilon>0[/mm] gilt

[mm]P(|X_{n}-X|>\epsilon)=\integral_\Omega(1_{(\epsilon/\wurzel{n},\infty)}\circ1_{I_n})d\lambda\le\integral_{I_n}1_{(\epsilon/\wurzel{n},\infty)}(1)d\lambda\le1/n\to0[/mm] für [mm] n\to \infty. [/mm]

>  
> Also liegt stoch. Konv bzgl "0" vor?!

Ja.

>  
> Zur Konvergenz im pten Mittel, für p=1:
>  
> [mm]E[|X_{n}-0|]=\wurzel{n}*\bruch{1}{n}\to[/mm] 0.
>  
> Also liegt auch Konvergenz im ersten Mittel vor?!
>  
> Aber nicht Konvergenz im 2ten Mittel, da
> [mm]E[|X_{n}-0|^2]=E[n*1_{[\bruch{1}{n},\bruch{2}{n}]}]=1[/mm]
>  

Damit hast Du nur gezeigt, dass X=0 keine Grenzfunktion ist.

Sei [mm] p\ge1. [/mm] Dann gilt

[mm] ||X_n||_p^p:=\integral_\Omega|X_n|^pd\lambda=n^{p/2}*(1/n)=n^{(p-2)/2}\begin{cases}\to0, & \mbox{für }p=1\\=1,& \mbox{für }p=2\\\to\infty,& \mbox{sonst }\end{cases} [/mm]

Für p=1 liegt also eine Nullfolge vor. Grenzelement sind die fast sicher verschwindenden ZVn. Für p>2 kann keine Konvergenz vorliegen, da die Folge nicht beschränkt ist. Und für p=2 liegt die Vermutung nahe, dass keine Cauchyfolge vorliegt:

[mm] ||X_n-X_m||_2^2=\integral_\Omega|X_n-X_m|^2d\lambda=\integral_\Omega(n1_{I_n}-2\wurzel{nm}1_{I_n\cap I_m}+m1_{I_m})d\lambda=2-2\wurzel{nm}\lambda(I_n\cap I_m). [/mm]

Wenn [mm] 2n\ge [/mm] m oder [mm] 2m\ge [/mm] n gilt,  verschwindet [mm] \lambda(I_n\cap I_m). [/mm] Da für Konvergenz [mm] ||X_n-X_m||_2^2 [/mm] beliebig klein werden muss, wenn n und m beide nur hinreichend groß gewählt werden, kann also auch keine Konvergenz vorliegen.

> Bei der fast-sicheren Konvergenz kenn ich zwar auch die
> Definition, aber weiß nicht wie ich das ansetzen kann

Es gilt [mm] X_n(\omega)=\wurzel{n}1_{[1,2]}(n*\omega)=\begin{cases}0, & \mbox{für }\omega=0\\0,& \mbox{für }\omega>2/n\\\wurzel{n},& \mbox{sonst }\end{cases} [/mm]

Daraus folgt, dass [mm] X_n(\omega) [/mm] für jedes [mm] \omega [/mm] schließlich für alle n verschwindet. Somit liegt punktweise Konvergenz auf einer Menge vom W-Maß eins und damit fast sichere Konvergenz vor.

LG

gfm

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de