www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Konvergenzarten
Konvergenzarten < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzarten: Idee
Status: (Frage) beantwortet Status 
Datum: 20:48 Do 22.11.2012
Autor: Freaky

Aufgabe
Is almost sure convergence equivalent to convergence in probability if Ω is
countable?

Hallo zusammen,
ich habe bei obiger Aufgabe keine Idee, wie ich es beweisen bzw. gegebenenfalls ein Gegenbeispiel konstruieren könnte und bin daher über jeden Hinweis dankbar.

Freaky

        
Bezug
Konvergenzarten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Do 22.11.2012
Autor: Gonozal_IX

Hiho,

schau dir einfach mal die wandernden Türme an.

MFG,
Gono.

Bezug
                
Bezug
Konvergenzarten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:00 Fr 23.11.2012
Autor: Freaky

Hallo noch 'mal,
was sind denn die wandernden Türme?

Gruß, Freaky

Bezug
                        
Bezug
Konvergenzarten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Fr 23.11.2012
Autor: Gonozal_IX

Hiho,

> was sind denn die wandernden Türme?

ein bisschen Recherche in gängiger Standardlektüre für Stochastik wäre schon angebracht.....
Betrachte:

[mm] $f_n [/mm] = [mm] 1_{\left[\bruch{k}{2^m},\bruch{k+1}{2^m}\right]}$ [/mm] mit [mm] $n=2^m [/mm] + k, [mm] k\in\\left{0,\ldots,2^m - 1\right\}$ [/mm]

Wogegen konvergiert [mm] f_n [/mm] stochastisch, wogegen fast sicher?

MFG,
Gono.

Bezug
                                
Bezug
Konvergenzarten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 Fr 23.11.2012
Autor: steppenhahn

Hi Gonozal,

aber ist das nicht ein Gegenbeispiel für stoch. Konv [mm] \not\Rightarrow [/mm] fast sichere Konvergenz?
In deinem Beispiel ist der Raum doch auch überabzählbar, in der Aufgabe jedoch abzählbar.



Viele Grüße,
Stefan

Bezug
                                        
Bezug
Konvergenzarten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:12 Fr 23.11.2012
Autor: Gonozal_IX

Hiho,

> aber ist das nicht ein Gegenbeispiel für stoch. Konv
> [mm]\not\Rightarrow[/mm] fast sichere Konvergenz?
>  In deinem Beispiel ist der Raum doch auch überabzählbar,  in der Aufgabe jedoch abzählbar.

Ja, aber die Idee ist die selbe.
Schneide das Intervall mit [mm] \IQ [/mm] und das Resultat bleibt dasselbe!

In diesem Sinne ist deine andere Antwort auch falsch.

MFG,
Gono.

Bezug
                                                
Bezug
Konvergenzarten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:10 Fr 23.11.2012
Autor: steppenhahn


> Hiho,
>  
> > aber ist das nicht ein Gegenbeispiel für stoch. Konv
> > [mm]\not\Rightarrow[/mm] fast sichere Konvergenz?
>  >  In deinem Beispiel ist der Raum doch auch
> überabzählbar,  in der Aufgabe jedoch abzählbar.
>  
> Ja, aber die Idee ist die selbe.
>  Schneide das Intervall mit [mm]\IQ[/mm] und das Resultat bleibt
> dasselbe!

Nein, das denke ich nicht. Das auf [mm] $\IQ$ [/mm] eingeschränkte Lebesgue-Maß macht keinen Sinn mehr.

Viele Grüße,
Stefan

Bezug
                                                        
Bezug
Konvergenzarten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:09 Sa 24.11.2012
Autor: Gonozal_IX

Hiho,

> Nein, das denke ich nicht. Das auf [mm]\IQ[/mm] eingeschränkte
> Lebesgue-Maß macht keinen Sinn mehr.

Sinn macht es schon, es ist nur kein W-Maß mehr.

MFG,
Gono.

Bezug
        
Bezug
Konvergenzarten: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 19:49 Fr 23.11.2012
Autor: steppenhahn

Hallo Freaky,

die Aussage ist wahr. D.h. für abzählbare Grundräume sind die Konvergenzen äquivalent.

Du musst also die Abzählbarkeit des Grundraums deutlich in deinen Beweis einfließen lassen. Es gelte [mm] $X_n \to [/mm] X$ stochastisch.

Angenommen, es gilt NICHT [mm] $X_n \to [/mm] X$ fast sicher.
Dann gibt es wegen der Abzählbarkeit von [mm] $\Omega$ [/mm] (mach dir das klar) ein [mm] $\omega_0 \in \Omega$ [/mm] mit [mm] $X_n(\omega_0) \not\to X(\omega_0)$ [/mm] und [mm] $\IP(\{\omega_0\}) [/mm] > 0$.

Leite nun einen Widerspruch zur stochastischen Konvergenz her.

Viele Grüße,
Stefan

Bezug
                
Bezug
Konvergenzarten: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 20:48 Fr 23.11.2012
Autor: Gonozal_IX

Hiho,

>  Dann gibt es wegen der Abzählbarkeit von [mm]\Omega[/mm] (mach dir  das klar) ein [mm]\omega_0 \in \Omega[/mm] mit [mm]X_n(\omega_0) not\to X(\omega_0)[/mm] und [mm]\IP(\{\omega_0\}) > 0[/mm].

so ein [mm] \omega_0 [/mm] muss es nicht geben.
Bspw. in [mm] $(\IQ \cap [0,1],\mathcal{B}(\IQ \cap [0,1]),\lambda)$ [/mm] gilt [mm] $\lambda(\omega_0) [/mm] = 0$ für alle [mm] $\omega_0 \in \IQ \cap [/mm] [0,1]$

MFG,
Gono.

Bezug
                        
Bezug
Konvergenzarten: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 23:07 Fr 23.11.2012
Autor: steppenhahn

Hallo Gonozal,


> >  Dann gibt es wegen der Abzählbarkeit von [mm]\Omega[/mm] (mach dir

>  das klar) ein [mm]\omega_0 \in \Omega[/mm] mit [mm]X_n(\omega_0) not\to X(\omega_0)[/mm]
> und [mm]\IP(\{\omega_0\}) > 0[/mm].
>  
> so ein [mm]\omega_0[/mm] muss es nicht geben.
>  Bspw. in [mm](\IQ \cap [0,1],\mathcal{B}(\IQ \cap [0,1]),\lambda)[/mm]
> gilt [mm]\lambda(\omega_0) = 0[/mm] für alle [mm]\omega_0 \in \IQ \cap [0,1][/mm]


Das [mm] $\lambda$ [/mm] in deinem Beispiel ist offensichtlich kein Wahrscheinlichkeitsmaß. Ich sehe also nicht, warum das ein Gegenbeispiel ist.

So ein [mm] $\omega_0$ [/mm] gibt es, weil mit einer Menge $N$ mit [mm] $\IP(N) [/mm] > 0$ sonst
[mm] $\IP(N) [/mm] = [mm] \IP\left(\sum_{\omega \in N}\{\omega\}\right) [/mm] = [mm] \sum_{\omega \in N}\IP(\{\omega\}) [/mm] = 0$
wäre (beachte N abzählbar da [mm] $\Omega$ [/mm] abzählbar).


Viele Grüße,
Stefan

Bezug
                                
Bezug
Konvergenzarten: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 00:09 Sa 24.11.2012
Autor: Gonozal_IX

Hiho,

du hast natürlich recht, entschuldige die Verwirrung.

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de