www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzbeweis
Konvergenzbeweis < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzbeweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:42 So 26.10.2008
Autor: mathpsycho

Aufgabe
Keine.

Woran liegt es, dass [mm] \summe_{k=1}^\infty{\bruch{1}{k^n}} [/mm] für n>1 konvergiert und für n [mm] \le [/mm] 1 divergiert?

        
Bezug
Konvergenzbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 So 26.10.2008
Autor: uliweil

Hallo Falk,

gute Frage. Letztlich am Logarithmus [mm] (\summe_{i=1}^{n}\bruch{1}{i} \approx [/mm] ln(n) + [mm] \gamma). [/mm]

Schau Dir mal zu diesem Thema den Artikel über die harmonische Reihe in Wikipedia an. Vielleicht bringt das mehr Erkenntnis.

Gruß

Uli

Bezug
        
Bezug
Konvergenzbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 So 26.10.2008
Autor: HJKweseleit

Dich wundert sicher, dass diese Eigenschaft so "schlagartig" eintritt. Das ist aber bei Konvergenzen oft so: Die geometrische Reihe konvergiert für |q|<1 und für |q|=1 schlagartig nicht mehr, und dieses Verhalten findest du überall für endliche Konvergenzradien von Potenzreihen.

Nun zu deinem Problem:
Zeichne zur gesuchten Summe

[mm]\summe_{k=1}^\infty{\bruch{1}{k^n}}[/mm]

den Gaphen von [mm] f(x)= \bruch{1}{x^n}}[/mm].

[Dateianhang nicht öffentlich]

Deine Summanden sind dann die Werte f(1), f(2), f(3)..., die du aufsummieren sollst. Diese Werte findest du als Höhen der von mir eingezeichneten roten Linien wieder.

Ergänzt man diese Linien nun durch einen entsprechend hohen Balken der Breite 1, so entspricht die Fläche dieses Balkens gerade dem Wert des jeweiligen Summanden. Also gibt die Gesamtfläche der Balken den Wert der Summe wieder.

Für n=1 ziehst du die Balkenbreiten immer nach rechts (der Balken steht rechts von der Ausgangshöhe), so dass du die grüne+gelbe Fläche als Summand bekommst. Die Summe besteht somit aus der grünen+gelben Gesamtfläche und ist somit größer als die Fläche unterhalb des Graphen. Diese Fläche ist aber

[mm] \integral_{1}^{\infty}{\bruch {1}{x} dx}=ln(\infty)-ln(1)=\infty [/mm]

Also divergiert die Reihe.

Für n>1 ziehst du die Balkenbreiten immer nach links (der Balken steht links von der Ausgangshöhe), so dass du nur die grüne Fläche als Summand bekommst. Die Summe besteht somit aus dem ersten Summanden 1 (hier nicht eingezeichnet) und der der grünen Gesamtfläche und ist somit kleiner als die Fläche unterhalb des Graphen + 1. Diese Fläche ist aber

[mm] \integral_{1}^{\infty}{\bruch {1}{x^n} dx}=\left[\bruch{1}{(1-n)x^{n-1}}\right]_{1}^{\infty}=\bruch{1}{(1-n)\infty^{n-1}}-\bruch{1}{(1-n)1^{n-1}}=0-(\bruch{1}{(1-n)})=\bruch{1}{(n-1)}. [/mm]

Also konvergiert die Reihe, weil sie einen kleineren Wert als [mm] 1+\bruch{1}{(n-1)}= \bruch{n}{(n-1)}hat. [/mm]






Dateianhänge:
Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
Bezug
                
Bezug
Konvergenzbeweis: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:36 So 26.10.2008
Autor: mathpsycho

Vielen Dank! Die Idee die zugehörige Integralfunktion für den Fall n>1 als konvergente Majorante zu benutzen finde genial. Außerdem kann man sie verschieben und als divergente Minorante verwenden, um nachzuweisen, dass die Reihe für n<1 divergiert. Der sprunghafte Übergang von Divergenz zu Konvergenz bei n=1 passt gut damit zusammen, dass die Potzenregel für n=-1 nicht gilt. Für n [mm] \not= [/mm] 1 finde ich es wegen des Unterschieds zwischen einem positiven oder negativen Exponenten ebenfalls einleuchtend. Du hast mir wirklich sehr geholfen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de