www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzradius
Konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:11 Mo 24.02.2014
Autor: Babybel73

Hallo zusammen

Möchte den Konvergenzradius folgender Reihe berechnen:
[mm] \summe_{k=0}^{\infty} \bruch{(-\bruch{1}{x^2})^k}{k!} [/mm]

Nun möchte ich wissen, ob ich es so lösen kann:
Setze [mm] t=\bruch{1}{x^2} \gdw x=\pm \wurzel{\bruch{1}{t}} [/mm]

So dann erhalte ich ja:
[mm] \summe_{k=0}^{\infty} \bruch{(-t)^k}{k!} [/mm] = [mm] \summe_{k=0}^{\infty} \bruch{(-1)^kt^k}{k!} [/mm]

Also [mm] a_k=\bruch{(-1)^k}{k!} [/mm]

[mm] \limes_{k\rightarrow\infty} |\bruch{(-1)^k}{k!} [/mm] * [mm] \bruch{(k+1)!}{(-1)^{k+1}}| [/mm] = [mm] \limes_{k\rightarrow\infty} \bruch{(k+1)*k!}{k!} [/mm] = [mm] \limes_{k\rightarrow\infty} [/mm] k+1 = [mm] \infty [/mm]

Nun muss ich die Substitution wieder rückgängig machen:
[mm] x=\pm \wurzel{\bruch{1}{t}} [/mm] = [mm] \pm \wurzel{\bruch{1}{\infty}} [/mm] = 0

Somit divergiert die Reihe für alle x [mm] \in \IR. [/mm]

Stimmt das so?

Vielen Dank für eure Hilfe!

        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 Mo 24.02.2014
Autor: Diophant

Hallo,



> Hallo zusammen

>

> Möchte den Konvergenzradius folgender Reihe berechnen:
> [mm]\summe_{k=0}^{\infty} \bruch{(-\bruch{1}{x^2})^k}{k!}[/mm]

>

> Nun möchte ich wissen, ob ich es so lösen kann:
> Setze [mm]t=\bruch{1}{x^2} \gdw x=\pm \wurzel{\bruch{1}{t}}[/mm]

>

> So dann erhalte ich ja:
> [mm]\summe_{k=0}^{\infty} \bruch{(-t)^k}{k!}[/mm] =
> [mm]\summe_{k=0}^{\infty} \bruch{(-1)^kt^k}{k!}[/mm]

>

> Also [mm]a_k=\bruch{(-1)^k}{k!}[/mm]

>

> [mm]\limes_{k\rightarrow\infty} |\bruch{(-1)^k}{k!}[/mm] *
> [mm]\bruch{(k+1)!}{(-1)^{k+1}}|[/mm] = [mm]\limes_{k\rightarrow\infty} \bruch{(k+1)*k!}{k!}[/mm]
> = [mm]\limes_{k\rightarrow\infty}[/mm] k+1 = [mm]\infty[/mm]

>

> Nun muss ich die Substitution wieder rückgängig machen:
> [mm]x=\pm \wurzel{\bruch{1}{t}}[/mm] = [mm]\pm \wurzel{\bruch{1}{\infty}}[/mm]
> = 0

>

> Somit divergiert die Reihe für alle x [mm]\in \IR.[/mm]

>

> Stimmt das so?

Das kann ja nun ganz offensichtlich nicht sein, denn nach Leibniz konvergiert die obige Reihe für jedes [mm] x\ne{0} [/mm] (man kann sogar direkt den Grenzert [mm] e^{-1/x^2} [/mm] angeben!). Dein Fehler liegt m.A. nach hier schon in der Substitution, denn du entwickelst um [mm] t_0=0 [/mm] und für diesen Wert ist die Reihe überhaupt nicht definiert.

Ganz sicher, welche Möglichkeiten man hier außer Leibniz bzw. der Potenzreihe der e-Funktion hat, bin ich nicht und stelle daher auf 'teilweise beantwortet'.

Gruß, Diophant

Bezug
        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Mo 24.02.2014
Autor: fred97

Setze [mm] a_k:= \bruch{(-\bruch{1}{x^2})^k}{k!} [/mm]  (x [mm] \ne [/mm] 0) und lasse auf die Reihe

[mm] \summe_{k=0}^{\infty}a_k [/mm] das Quotientenkriterium los.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de