www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzradius
Konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Mi 30.07.2008
Autor: Surfer

Hallo, wenn ich von folgender Potenzreihe den Konvergenzradius berechnen soll, komme ich auf ein falsches Ergebnis, wo liegt mein Fehler?

[mm] \summe_{k=0}^{\infty} \bruch{(-1)^{k}*(2x)^{2k+1}}{2k+1} [/mm]
[mm] \Rightarrow \summe_{k=0}^{\infty} \bruch{(-1)^{k}*(2)^{2k+1}(x)^{2k+1}}{2k+1} [/mm]

[mm] \Rightarrow |\bruch{(-1)^{k}*2^{2k+1}}{2k+1}* \bruch{2(k+2)}{(-1)^{k+1}*2^{2(k+2)}}| [/mm]

[mm] \Rightarrow |\bruch{(-1)^{k} 2^{2k}*2 *(2k+4)}{(2k+1) *(-1)^{k} *(-1)^{1} *2^{2k}*2^{4}}| [/mm]

[mm] \Rightarrow |\bruch{4k+8}{-32k-16}| [/mm]
[mm] \Rightarrow \limes_{k\rightarrow\infty} [/mm] = [mm] \bruch{1}{8} [/mm]

herauskommen soll aber [mm] \bruch{1}{2} [/mm] wo liegt mei fehler?

lg Surfer

        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Mi 30.07.2008
Autor: schachuzipus

Hallo Surfer,

> Hallo, wenn ich von folgender Potenzreihe den
> Konvergenzradius berechnen soll, komme ich auf ein falsches
> Ergebnis, wo liegt mein Fehler?
>  
> [mm]\summe_{k=0}^{\infty} \bruch{(-1)^{k}*(2x)^{2k+1}}{2k+1}[/mm]
>  
> [mm]\Rightarrow \summe_{k=0}^{\infty} \bruch{(-1)^{k}*(2)^{2k+1}(x)^{2k+1}}{2k+1}[/mm]

Ja, das ist ne gute Umformung!

>  
> [mm]\Rightarrow |\bruch{(-1)^{k}*2^{2k+1}}{2k+1}* \bruch{2(k+2)}{(-1)^{k+1}*2^{2(k+2)}}|[/mm]

Was rechnest du hier?

Das sieht entfernt nach dem Quotientenkriterium aus.

Das muss dann aber lauten [mm] $\lim\limits_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|=\lim\limits_{k\to\infty}\left|\frac{(-1)^{k+1}\cdot{}2^{2k+3}\cdot{}x^{2k+3}}{2k+3}\cdot{}\frac{2k+1}{(-1)^k\cdot{}2^{2k+1}\cdot{}x^{2k+1}}\right|=...=4|x|^2$ [/mm]

Konvergenz also nach dem QK für [mm] $4|x|^2<1$, [/mm] also [mm] $|x|<\frac{1}{2}$ [/mm]



> [mm]\Rightarrow |\bruch{(-1)^{k} 2^{2k}*2 *(2k+4)}{(2k+1) *(-1)^{k} *(-1)^{1} *2^{2k}*2^{4}}|[/mm]
>  
> [mm]\Rightarrow |\bruch{4k+8}{-32k-16}|[/mm]
>  [mm]\Rightarrow \limes_{k\rightarrow\infty}[/mm]
> = [mm]\bruch{1}{8}[/mm]
>  
> herauskommen soll aber [mm]\bruch{1}{2}[/mm] wo liegt mei fehler?
>  
> lg Surfer

Alternativ kannst du das übliche Kriterium für Potenzreihen : Cauchy-Hadamard bemühen.

Du hast ja die Potenzreihe [mm] $\sum\frac{(-1)^k\cdot{}2^{2k+1}}{2k+1}\cdot{}x^{2k+1}$ [/mm]

Berechne [mm] $l=\limsup\limits_{k\to\infty}\sqrt[2k+1]{|a_k|}$ [/mm] mit [mm] $a_k=\frac{(-1)^k\cdot{}2^{2k+1}}{2k+1}$ [/mm]

Dann ist der Konvergenzradius [mm] $R=\frac{1}{l}$ [/mm]

Das ist hier am schnellsten und einfachsten...

LG

schachuzipus

Bezug
                
Bezug
Konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Mi 30.07.2008
Autor: Surfer

Ich nehm dazu immer folgendes

[mm] \limes_{n\rightarrow\infty} |\bruch{a_{n}}{a_{n+1}}| [/mm] also umgekehrte Quotientenregel, das liefert den direkten Radius! Aber was war jetzt mein Fehler? Wenn icg es so rechne nach meiner Form?

lg Surfer

Bezug
                        
Bezug
Konvergenzradius: Hinweis
Status: (Antwort) fertig Status 
Datum: 16:02 Mi 30.07.2008
Autor: Loddar

Hallo Surfer!


Du setzt hier $n+1_$ falsch ein. Denn z.B. aus $2n+1_$ wird durch einsetzen von $n+1_$ :
$$2*(n+1)+1 \ = \ 2n+2+1 \ = \ 2n+3$$

Gruß
Loddar


Bezug
                                
Bezug
Konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Mi 30.07.2008
Autor: Surfer

Ah danke habs gemerkt, wenn ich dann dies ausrechne ohne den [mm] x^{2k+1} [/mm] Teil erhalte ich [mm] \bruch{1}{4} [/mm] und wegen [mm] x^{2k+1} [/mm] muss ich wohl dann noch die Wurzel ziehen und erhalte dann [mm] \bruch{1}{2} [/mm]
wah?

lg Surfer

Bezug
                                        
Bezug
Konvergenzradius: richtig
Status: (Antwort) fertig Status 
Datum: 16:47 Mi 30.07.2008
Autor: Loddar

Hallo Surfer!

[ok]


Gruß
Loddar


Bezug
                        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Mi 30.07.2008
Autor: angela.h.b.


> Ich nehm dazu immer folgendes
>  
> [mm]\limes_{n\rightarrow\infty} |\bruch{a_{n}}{a_{n+1}}|[/mm] also
> umgekehrte Quotientenregel, das liefert den direkten
> Radius! Aber was war jetzt mein Fehler? Wenn icg es so
> rechne nach meiner Form?

Hallo,

dafür, den Konvergenzradius via [mm] \limes_{n\rightarrow\infty} |\bruch{a_{n}}{a_{n+1}}| [/mm] auszurechnen, fehlt Dir aber eine wichtige Voraussetzung.

Welche? Schau Dir dazu Deine Reihe an:

es ist $ [mm] \summe_{k=0}^{\infty} \bruch{(-1)^{k}\cdot{}(2x)^{2k+1}}{2k+1} [/mm] $= 2x  - [mm] \bruch{2³}{3}x³ [/mm] + [mm] \bruch{2^5}{5}x^5 [/mm] - ...,

und das macht Dir ein Problem bei der Bildung des Quotienten.

Du kannst Dich natürlich mehr oder weniger elegant aus der Affäre ziehen, indem Du ...=x( [mm] 2x^0 [/mm]  - [mm] \bruch{2³}{3}x^2 [/mm] + [mm] \bruch{2^5}{5}x^4 [/mm] - ...,) betrachtest.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de