www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzradius
Konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:15 Mi 04.03.2009
Autor: Christoph87

Aufgabe
Berechnen Sie den Konvergenzradius von [mm]\summe_{n=0}^{\infinity}\frac{n!}{n^n}(x-1)^{2n}[/mm].

Also prinzipiell kenne ich die Formeln:
[mm]R_a=\frac{1}{\limsup\limits_{n\rightarrow\infty}\left(\sqrt[n]{|a_n|}\right)}. [/mm]
und    
[mm]R_a=\lim_{n\rightarrow\infty} \bigg| \frac{a_{n}}{a_{n+1}} \bigg|[/mm]

Jedoch verwirrt mich in dieser Aufgabe das -1. Hatte versucht das mit dem binomischen Lehrsatz aus zu rechnen, jedoch sah das danach nur noch schlimmer aus.

Hat jemand einen kleinen Tipp für mich? Ich stehe gerade total auf dem Schlauch...

Mit freundlichen Grüßen,
Christoph

        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Mi 04.03.2009
Autor: Marcel

Hallo,

> Berechnen Sie den Konvergenzradius von
> [mm]\summe_{n=0}^{\infinity}\frac{n!}{n^n}(x-1)^{2n}[/mm].
>  Also prinzipiell kenne ich die Formeln:
>  
> [mm]R_a=\frac{1}{\limsup\limits_{n\rightarrow\infty}\left(\sqrt[n]{|a_n|}\right)}.[/mm]
>  und    
> [mm]R_a=\lim_{n\rightarrow\infty} \bigg| \frac{a_{n}}{a_{n+1}} \bigg|[/mm]

Nimm' hier die zweite Formel:
[mm] $$R_a=\lim_{n\rightarrow\infty} \bigg| \frac{a_{n}}{a_{n+1}} \bigg|\,.$$ [/mm]

> Jedoch verwirrt mich in dieser Aufgabe das -1. Hatte
> versucht das mit dem binomischen Lehrsatz aus zu rechnen,
> jedoch sah das danach nur noch schlimmer aus.
>  
> Hat jemand einen kleinen Tipp für mich? Ich stehe gerade
> total auf dem Schlauch...
>  
> Mit freundlichen Grüßen,
>  Christoph

wo ist denn Dein Problem? Oben ist (nach einer Substitution [mm] $y:=(x-1)^2$, [/mm] und wenn man die Koeffizienten der Potenzreihe in [mm] $y\,$ [/mm] dann [mm] $b_n$ [/mm] nennt)
[mm] $b_n=n!/n^n\,,$ [/mm] so dass
[mm] $$\left|\frac{b_n}{b_{n+1}}\right|=\frac{n!}{n^n}*\frac{(n+1)^{n+1}}{(n+1)!}=\frac{n!}{(n+1)!}*\frac{(n+1)^{n+1}}{n^n}=\frac{(n+1)^n}{n^n}=\left(1+\frac{1}{n}\right)^n\,.$$ [/mm]

Und jetzt solltest Du den Konvergenzradius berechnen können, denn der Grenzwert der Folge [mm] $\Bigg(\Big(1+\frac{1}{n}\Big)^n\Bigg)_{n \in \IN}$ [/mm] sollte Dir durchaus bekannt sein. Das wäre dann der Konvergenzradius der Potenzreihe in [mm] $y=(x-1)^2\,,$ [/mm] und damit kann man sich den der obigen Potenzreihe in der Variablen [mm] $x\,$ [/mm] herleiten.

Aber Warnung:
Bei [mm] $\summe_{n=0}^{\infty}\frac{n!}{n^n}(x-1)^{2n}=\sum_{n=0}^\infty a_n (x-x_0)^n$ [/mm] wäre ja
[mm] $$a_n=\begin{cases} 0, & \mbox{für } n \mbox{ ungerade} \\ \frac{(n/2)!}{(n/2)^{n/2}}, & \mbox{für } n \mbox{ gerade} \end{cases}\;\;(n \in \IN_0)$$ [/mm]

zu setzen, und hier würde die zweite Formel Probleme bereiten, da ja jedes zweite Folgenglied der Folge [mm] $(a_n)_{n \in \IN_0}$ [/mm] verschwindet.

Also, wie oben angedeutet, solltest Du hier halt zunächst [mm] $y:=(x-1)^2$ [/mm] substituieren und dann dann damit weiterarbeiten. Ich ergänze Dir gleich noch einen Link zur Orientierung, wie das vonstatten gehen kann, wo Du auch Begründungen dazu findest, wie Du, wenn Du den Konvergenzradius der Potenzreihe in [mm] $y\,$ [/mm] kennst, dann den der Potenzreihe in [mm] $x\,$ [/mm] berechnen kannst...


Edit:
Ergänzung: Siehe z.B. diese Antwort, bzw. Du kannst Dir ruhig auch die ganze Diskussion dort anschauen...


Gruß,
Marcel

Bezug
        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Mi 04.03.2009
Autor: schachuzipus

Hallo Christoph,

wenn dich das $x-1$ und die Tatsache, dass dort keine Potenzreihe im eigentlichen Sinne, also [mm] $\sum\limits_{n=0}^{\infty}a_n(x-x_0)^n$ [/mm] steht, sondern etwas mit "hoch 2n", gar zu sehr verwirren, definiere [mm] $y:=(x-1)^2$ [/mm]

Dann hast du die Potenzreihe [mm] $\sum\limits_{n=0}^{\infty}\frac{n!}{n^n}y^n$, [/mm] deren Konvergenzradius $R$ du garantiert berechnen kannst, siehe Hinweis von Marcel

Damit hast du dann Konvergenz für $|y|<R$, also [mm] $(x-1)^2
Das sollte doch zu machen sein ...



LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de