www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzradius
Konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:52 Mo 30.11.2009
Autor: wee

Aufgabe
Bestimme den Konvergenzradius der folgenden Potenzreihen:

a) [mm] \summe_{n=0}^\infty \bruch{(-1)^n}{n!(n+k)!}(\bruch{z}{2})^{2n+k}, [/mm] k [mm] \in \IN [/mm]

b) [mm] \summe_{n=0}^\infty \bruch{(-1)^n}{2n+1}z^{2n+1} [/mm]

Hallo,

mein Problem ist folgendes: eine Potenzreihe ist ja definiert als [mm] \summe a_{n}z^n. [/mm]
Bei den Reihen oben steht aber [mm] z^{2n+k} [/mm] bzw. [mm] z^{2n+1}. [/mm]

Kann man trotzdem die Kriterien von Cauchy-Hadamard [mm] (R=\bruch{1}{limsup\wurzel[n]{|a_n|}}) [/mm] und Euler [mm] (R=\bruch{1}{lim \bruch{a_{n+1}}{a_n}}) [/mm] anwenden und falls ja, mit welchem Argument?


Ich hatte mir überlegt, dass man ja erstmal [mm] z^n [/mm] betrachten kann, dort Konvergenz zeigt und dann argumentiert, dass jede Teilfolge (Potenzreihe als Folge von Partialsummen betrachtet) auch in diesem Konvergenzradius konvergieren muss.
Aber ich glaube das ist nicht ganz richtig, denn angenommen man findet, dass der Konvergenzradius für die Potenzreihe mit [mm] z^n [/mm] gleich 0 ist, dann könnte es doch eine Teilfolge geben, die einen größeren Konvergenzradius hat, oder?

        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 07:10 Di 01.12.2009
Autor: fred97

Zu b):   $ [mm] \summe_{n=0}^\infty \bruch{(-1)^n}{2n+1}z^{2n+1}=\summe_{k=0}^\infty a_kz^k [/mm]  $

mit              [mm] $a_{2k+1}= \bruch{(-1)^k}{2k+1}$ [/mm]   und    [mm] $a_{2k}=0$ [/mm]  für $k [mm] \in \IN_0$ [/mm]

FRED

Bezug
                
Bezug
Konvergenzradius: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:59 Di 01.12.2009
Autor: wee

Danke für die Antwort!

Bei b) habe ich deine Idee genommen und dann mit Cauchy-Hadamard gezeigt, dass der Konvergenzradius 1 ist.

Bei a) liegt ja so eine Unterteilung nicht auf der Hand. Wenn man aber mal mit [mm] z^n [/mm] anstatt [mm] z^{2n+k} [/mm] rechnet, dann liefert die Formel von Euler (Q-Krit.), dass der Konvergenzradius [mm] \infty [/mm] ist, die Reihe also überall konvergiert. Kann man da jetzt so argumentieren, dass weil die Reihe überall konvergiert, auch Teilfolgen überall konvergieren, also auch [mm] \summe a_nz^{2n+k}? [/mm]

Bezug
                        
Bezug
Konvergenzradius: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Do 03.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de