www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzuntersuchung
Konvergenzuntersuchung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzuntersuchung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:36 Do 11.12.2008
Autor: mighttower2

Aufgabe
Untersuchen Sie auf Konvergenz
[mm]\summe_{n=1}^{\infty} \bruch{n+1}{n^2+\wurzel{n}} [/mm]

Hallo zusammen, ich denke das die Aufgabe mit Majoranten bzw. Minorantenkriterium zu lösen ist, aber ich finde einfach nicht die passende Vergleichsreihe. Ich vermute die Reihe divergiert.
Hat jemand einen Ansatz?
Vielen dank


        
Bezug
Konvergenzuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Do 11.12.2008
Autor: schachuzipus

Hallo mighttower2,

> Untersuchen Sie auf Konvergenz
>  [mm]\summe_{n=1}^{\infty} \bruch{n+1}{n^2+\wurzel{n}}[/mm]
>  Hallo
> zusammen, ich denke das die Aufgabe mit Majoranten bzw.
> Minorantenkriterium zu lösen ist, aber ich finde einfach
> nicht die passende Vergleichsreihe. Ich vermute die Reihe
> divergiert.

Das würde ich auch meinen, du brauchst also eine divergente Minorante, eine kleinere Reihe, die gegen [mm] \infty [/mm] abhaut

Du kannst zum Verkleinern den Zähler verkleinern und/oder den Nenner vergrößern

So viele "bekannte" divergente Standardreihen kennt man ja nicht, die bekannteste ist wohl die harmonische Reihe; versuche also, gegen eine (Variante der) harmonische(n) Reihe abzuschätzen

>  Hat jemand einen Ansatz?

Ja ;-)

>  Vielen dank
>  

Gerne

LG

schachuzipus

Bezug
                
Bezug
Konvergenzuntersuchung: Lösungsversuch
Status: (Frage) beantwortet Status 
Datum: 23:43 Do 11.12.2008
Autor: mighttower2

Ok hier mal mein Versuch:
[mm]\bruch{n+1}{n^2+\wurzel{n}}>\bruch{n}{n^2+n^2}=\bruch{n}{2n^2}=\bruch{1}{2n}=\bruch{1}{2}*\bruch{1}{n}[/mm]
Könnte man das so machen?
Danke!

Bezug
                        
Bezug
Konvergenzuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:47 Do 11.12.2008
Autor: schachuzipus

Hallo nochmal,

> Ok hier mal mein Versuch:
>  
> [mm]\bruch{n+1}{n^2+\wurzel{n}}>\bruch{n}{n^2+n^2}=\bruch{n}{2n^2}=\bruch{1}{2n}=\bruch{1}{2}*\bruch{1}{n}[/mm] [daumenhoch]
>  Könnte man das so machen?

Perfekt!

Damit hast du mit [mm] $\frac{1}{2}\cdot{}\sum\frac{1}{n}$ [/mm] deine divergente Minorante, denn wenn [mm] $\sum\frac{1}{n}$ [/mm] gegen [mm] $\infty$ [/mm] abhaut, so tut es [mm] $\frac{1}{2}\cdot{}\sum\frac{1}{n}$ [/mm] gewiss auch

>  Danke!


LG

schachuzipus


Bezug
                                
Bezug
Konvergenzuntersuchung: Gelöst
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:48 Do 11.12.2008
Autor: mighttower2

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de