www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Konvex/Rechts-linksseitige Abl
Konvex/Rechts-linksseitige Abl < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvex/Rechts-linksseitige Abl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:54 Fr 09.01.2015
Autor: sissile

Aufgabe
Sei [mm] f:[a,b]\to\mathbb{R} [/mm] konvex. Zeigen Sie, dass f in jedem Punkt [mm] x\in(a,b) [/mm] eine rechts- und linksseitige Ableitung besitzt.

Hallo
Ich zeige dass die Abbildung monoton wachsend ist:
[mm] x\to h(x):=\frac{f(x)-f(\epsilon)}{x-\epsilon} [/mm]
wobei [mm] x\in [a,b]\cap]-\infty,\epsilon[, [/mm] d.h. [mm] x\in[a,\epsilon[ [/mm]
[mm] -)x [mm] y=\lambda x+(1-\lamnda)\epsilon [/mm] mit [mm] 0<\lambda<1 [/mm]
Nach Konvexität von f: [mm] \lambda f(x)+(1-\lambda)f(\epsilon)\ge [/mm] f(y)
[mm] \iff \lambda(f(x)-f(\epsilon))\ge [/mm] f(y) - [mm] f(\epsilon) [/mm]
Setzte [mm] 0<\lambda=\frac{y-\epsilon}{x-\epsilon} [/mm] < 1
Daraus ergibt sich: [mm] \frac{y-\epsilon}{x-\epsilon} (f(x)-f(\epsilon)) \ge f(y)-f(\epsilon) [/mm]
[mm] \iff \frac{f(x)-f(\epsilon)}{x-\epsilon} [/mm] < [mm] \frac{f(y)-f(\epsilon)}{y-\epsilon} [/mm]
[mm] \iff [/mm] h(x) < h(y)

Analog hab ich es gezeigt für [mm] x\in [/mm] [a,b] [mm] \cap ]\epsilon,\infty[, [/mm] d.h. [mm] x\in ]\epsilon,b] [/mm] für die rechtsseitige Ableitung.

Nun muss ich noch zeigen, dass h beschränkt ist, wo ich mir unsicher bin.
Für die rechtsseitige Ableitung(d.h. [mm] x\in ]\epsilon,b]) [/mm] kann ich doch h(x) beschränken durch h(b) oder?
Für [mm] x\in ]a,\epsilon[: [/mm] Da wir ein offenes Intervall haben [mm] \exists [/mm] r: [mm] [x-r,x+r]\in]a,\epsilon[ [/mm]
Da hätte ich aber das Problem, dass die obere Schranke von x abhängig ist wenn ich h(x) durch h(x+r) nach oben abschätze.

LG,
sissi


        
Bezug
Konvex/Rechts-linksseitige Abl: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 Fr 09.01.2015
Autor: leduart

Hallo sissile
betrachte f(x)=sin(x) x [mm] \in (0,\pi) [/mm] konvex aber nicht monoton steigend
außerdem, wie scjliesst du  denn auf die links undd rechrsseitige Ableitung?
Gruß leduart

Bezug
                
Bezug
Konvex/Rechts-linksseitige Abl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:22 Sa 10.01.2015
Autor: sissile

Hallo leduart,
Ich hab ja nicht die Monotonie von f gezeigt(was ich niemals vor hatte) sondern von meiner Hilfsfunktion h(x) mit $ [mm] x\to h(x):=\frac{f(x)-f(\epsilon)}{x-\epsilon} [/mm] $. Für die Linksseitige Ableitung hab ich den Definitionsbereich eingeschränkt auf $ [mm] x\in[a,\epsilon[ [/mm] $ und für die rechtsseitige Ableitung auf $ [mm] x\in ]\epsilon,b] [/mm] $. Wobei man für die Beschränkheit den Definitionsbereich noch eingrenzen kann indem ich die Eckpunkte wegnehme.
Meine Frage galt nun der Beschränkheit von h(x). Wenn ich diese in beiden Fällen zeigen kann dann ist die Funktion h(x) monoton steigend und beschränkt demnaxh existiert der Grenzwert.
Was ist noch unklar?

LG,
sissi


Bezug
                        
Bezug
Konvex/Rechts-linksseitige Abl: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Sa 10.01.2015
Autor: hippias

Du betrachstes also $f$ bzw. $h$ auf dem Intervall [mm] $[a,\varepsilon[$. [/mm] Es sei [mm] $x\in [a,\eps[$. [/mm] Wenn Du nun $x$ als konvexe Kombination von $a$ und [mm] $\varepsilon$ [/mm] darstellst und nochmals die Konvexitaet von $f$ ausnutzt, dann folgt die Beschraenktheit von $h$.  

Bezug
                                
Bezug
Konvex/Rechts-linksseitige Abl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:14 So 11.01.2015
Autor: sissile


> Du betrachstes also [mm]f[/mm] bzw. [mm]h[/mm] auf dem Intervall
> [mm][a,\varepsilon[[/mm]. Es sei [mm]x\in [a,\eps[[/mm]. Wenn Du nun [mm]x[/mm] als
> konvexe Kombination von [mm]a[/mm] und [mm]\varepsilon[/mm] darstellst und
> nochmals die Konvexitaet von [mm]f[/mm] ausnutzt, dann folgt die
> Beschraenktheit von [mm]h[/mm].  

Hallo hippias,
Ich erhalte so leider keine Abschätzung nach oben. Wenn ich das so mache wie von dir vorgeschlagen:
[mm] x\in[a,\epsilon[ [/mm]
[mm] x=\lambda [/mm] a [mm] +(1-\lambda)\epsilon [/mm] mit [mm] 0<\lambda\le1 [/mm]
[mm] f(x)<\lambda f(a)+(1-\lambda)f(\epsilon) [/mm]
[mm] \iff f(x)-f(\epsilon)<\lambda (f(a)-f(\epsilon)) [/mm]
Wähle [mm] \lambda=\frac{\epsilon-x}{\epsilon-a} [/mm]
[mm] \frac{f(x)-f(\epsilon)}{\epsilon-x} [/mm] < [mm] \frac{f(a)-f(\epsilon)}{\epsilon-a} [/mm]
/*(-1)
[mm] \frac{f(x)-f(\epsilon)}{x-\epsilon} [/mm] > [mm] \frac{f(a)-f(\epsilon)}{a-\epsilon} [/mm]
[mm] \iff [/mm] h(x)>h(a)
LG,
sissi

Bezug
                                        
Bezug
Konvex/Rechts-linksseitige Abl: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 So 11.01.2015
Autor: hippias

Stimmt, ich habe einen Vorzeichenfehler gemacht. Aber einen schoen subtilen: Es ist $h(x)= [mm] \frac{f(x)-f(\varepsilon)}{x-\varepsilon}$, $x\in [a,\varepsilon[$. [/mm] Fuer [mm] $x\leq x'<\varepsilon$ [/mm] sei $x'= [mm] \lambda (x-\varepsilon)+ \varepsilon$, [/mm] also [mm] $x'-\varepsilon=\lambda(x-\varepsilon)$. [/mm] Dann ist $h(x')= [mm] \frac{f(x')-f(\varepsilon)}{x'-\varepsilon}\leq \frac{\lambda(f(x)-f(\varepsilon))}{\lambda(x-\varepsilon)}= [/mm] h(x)$. Also ist $h$ fallend.

Das ist falsch! Denn das Vorzeichen des Nenners ist nicht beruecksichtigt worden. Es ist zwar [mm] $f(x')-f(\varepsilon)\leq \lambda(f(x)-f(\varepsilon))$, [/mm] aber [mm] $x'<\varepsilon$, [/mm] sodass tatsaechlich [mm] $\frac{f(x')-f(\varepsilon)}{x'-\varepsilon}\geq \frac{\lambda(f(x)-f(\varepsilon))}{x'-\varepsilon}= \frac{f(x)-f(\varepsilon)}{x-\varepsilon}$. [/mm]


Das wusstest Du aber, glaube ich, schon.

1. Fall: [mm] $f(a)\geq f(\varepsilon)$. [/mm] Aufgrund der Konvexitaet ist dann auch [mm] $f(x)\geq f(\varepsilon)$ [/mm] fuer alle [mm] $x\in [a,\varepsilon)$, [/mm] sodass [mm] $h\leq [/mm] 0$ ist und damit nach oben beschraenkt ist. In diesem Fall existiert die linksseitige Ableitung.
2. Fall: $f(a)< [mm] f(\varepsilon)$: [/mm] Wie eben folgt $f(x)< [mm] f(\varepsilon)$ [/mm] fuer alle [mm] $x\in [a,\varepsilon)$. [/mm] Und in diesem Fall ist die Behauptung, glaube ich, falsch. Ich definiere [mm] $x_{0}:= [/mm] 0$ und [mm] $x_{n+1}= x_{n}+(\frac{1}{3})^{n}$, [/mm] also [mm] $x_{n+1}= \sum_{i=0}^{n}(\frac{1}{3})^{i}$. [/mm] Analog sei [mm] $y_{0}=0$ [/mm] und [mm] $y_{n+1}= y_{n}+(\frac{1}{2})^{n}$, [/mm] also [mm] $y_{n+1}= \sum_{i=0}^{n}(\frac{1}{2})^{i}$. [/mm] Ferner definiere ich die Intervalle [mm] $I_{n}:= [x_{n},x_{n+1})$, $n\in \IN_{0}$. [/mm] Beachte, dass die [mm] $I_{n}$ [/mm] eine disjunkte Zerlegung des halboffenen Intervalls [mm] $[0,\frac{3}{2})$ [/mm] bilden.
Nun definiere ich auf dem Intervall [mm] $I_{n}$ [/mm] Funktion [mm] $f_{n}:I_{n}\to \IR$ [/mm] durch [mm] $f_{n}(x)= \frac{y_{n+1}-y_{n}}{x_{n+1}-x_{n}}(x-x_{n})+y_{n}= (\frac{3}{2})^{n}(x-x_{n})+y_{n}$ [/mm] (Strecke durch [mm] $(x_{n},y_{n})$ [/mm] und [mm] $(x_{n+1},y_{n+1})$). [/mm]

Schliesslich sei [mm] $f:[0,\frac{3}{2}]\to \IR$ [/mm] definiert durch $f(x):= [mm] \begin{cases} f_{n}(x) & x\in I_{n}\\ 2 & x= \frac{3}{2}\end{cases}$. [/mm]

Ich appeliere an die Anschauung, dass $f$ als aus immer steiler verlaufenden Geraden zusammengesetzte Funktion konvex ist, doch [mm] $\lim_{x\to \frac{3}{2}} \frac{f(x)-f(\frac{3}{2})}{x-\frac{3}{2}}= \infty$, [/mm] da [mm] $\geq (\frac{3}{2})^{n}$ [/mm] fuer alle [mm] $n\in \IN$. [/mm]

Bezug
                                                
Bezug
Konvex/Rechts-linksseitige Abl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:03 So 11.01.2015
Autor: sissile

Hallo,
Ich muss mir deinen Fall 2 noch genauer anschauen.
Aber ich hab im Internet das entdeckt:
http://www.mathematik.uni-dortmund.de/~tdohnal/TEACH/Seminar_AnaIII_SS2013/Strickmann_Konvexe_Fkt.pdf
Intern S.4 ganz unten.

Bezug
                                                        
Bezug
Konvex/Rechts-linksseitige Abl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:34 So 11.01.2015
Autor: hippias

Ja, auf einem offenen Intervall kann ich hinter [mm] $\varepsilon$ [/mm] rutschen und den Quotienten wieder nach oben beschraenken. Damit laesst sich auch Fall 2 behandeln, bzw. eine Fallunterscheidnung wird ueberfluessig. Mein Beispiel funktioniert ja nur, weil es hinter [mm] $\varepsilon$ [/mm] fuer mein $f$ nicht mehr weiterging.

Edit: Dein $f$ ist aber auf einem endlichen abgeschlossenen Intervall definiert. Da bin ich dann skeptisch, ob der Satz unter diesen Voraussetzungen richtig ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de